AP Computer Science A

Course Design:

The proposed syllabus is for a two-semester course, assuming 30 weeks are available prior to the AP exam. The course meets for five 45-minute class periods per week. The course includes a number of individual programming projects assigned for one week each. The time after the AP CS Exam is devoted to a team project and enrichment activities.

The course is based on numerous problem solving exercises, labs, and case studies, which require students to design and implement Java classes. The course requires 40-50 hours of hands-on work in a computer lab.

Course Objectives:

- Understand and apply the main principles of object-oriented software design and programming: classes and objects, constructors, methods, instance and static variables, inheritance, class hierarchies, and polymorphism
- Learn to code fluently in Java in a well-structured fashion and in good style; learn to pay attention to code clarity and documentation
- Learn to use Java library packages and classes within the scope of the AP Java subset
- Understand the concept of an algorithm; implement algorithms in Java using conditional and iterative control structures and recursion
- Learn to select appropriate algorithms and data structures to solve a given problem
- Compare efficiency of alternative solutions to a given problem
- Learn common searching and sorting algorithms: Sequential Search and Binary Search; Selection Sort, Insertion Sort, and Mergesort
- Understand one- and two-dimensional arrays, the List interface, and the ArrayList class, and use them appropriately in programming projects
- Acquire skills in designing object-oriented software solutions to problems from various application areas
- Discuss ethical and social issues related to the use of computers
- Prepare for the AP Computer Science A exam; meet all of the curricular requirements defined by the College Board for this course.
Texts and Supplementary Materials:

The College Board’s *Magpie, Picture, and Elevens Labs Student Guides*.

Current media sources and Internet articles and blogs discussing ethical and social issues related to computer use.

Teacher Materials:

The College Board’s Computer Science A Course Description.

The College Board’s *Magpie, Picture Lab, and Elevens Labs Teacher Guides*.

AP Central resources.

Course Outline:

Chapter numbers for readings and exercises refer to *Java Methods, 3rd AP Edition*. The labs, case studies, and projects proposed below come from *Java Methods* and serve only as examples of possible assignments; the teacher’s favorites may be used instead.
Unit 1: An introduction to computers and software engineering (2 weeks)

1. Hardware, software and the Internet (Week 1; duration 1 week)

Elements of a computer system. How information is represented in computer memory. Binary and hex number systems and ASCII / Unicode. An introduction to the Internet.

Reading and exercises: Chapter 1.
Lab: Find and explore the home pages of some Internet and World Wide Web pioneers.
Lab: Picture Lab, Activities 1 and 2. [CR1, CR6]

2. An introduction to software engineering (Week 2; duration 1 week)

Reading and exercises: Chapter 2 and Section 28.3
Lab: Compile and run simple programs (Hello World, Greetings) using command-line JDK tools or an IDE (Section 2.4).
Lab: Compile and run simple GUI applications (Section 2.6).

Unit 2: Syntax and objects (3 weeks)

3. Java syntax and style (Week 3; duration 1 week)

Reading and exercises: Chapter 3; Appendix A.
Lab: Correcting syntax errors and a logic error as an “adventure game” (Section 3.7). [CR6]

4. A first look at objects and classes (Weeks 4-5; duration 2 weeks)

Reading and exercises: Chapter 4 and Elevens Lab Student Guide, Activity 1
Lab: Design and implement Circle and Cylinder classes (Exercise 8, p. 92). [CR1, CR6]
Case study: BalloonDraw (Section 4.2). [CR1, CR6]
Case study and lab: Balloons of All Kinds (extend the Balloon class, coding constructors and overriding methods (Section 4.6). [CR1, CR6]
Lab: Elevens, Activity 1. [CR1, CR6]
Unit 3: Arithmetic, logic, and control statements (7 weeks)

5. Data types, variables, and arithmetic (Weeks 6-7; duration 2 weeks)

The concepts of a variable and a data type. Declarations of variables. Fields vs. local variables. The primitive data types: int, double and char. Literal and symbolic constants. Initialization of variables. Scope of variables. Arithmetic expressions. Data types in arithmetic expressions. The cast operator. The compound assignment (+=, etc.) and increment and decrement operators (++, --). Converting numbers and objects into strings. Math methods (abs, sqrt, pow, random).

Reading and exercises: Chapter 5.
Lab: Exercises for Chapter 5 (for example, 16 - 19, p. 128).
Lab: Pie Chart (Section 5.11).
Lab: Rainbow (Exercise 27, p. 130).

6. The if-else statement (Weeks 8-9; duration 2 weeks)

Reading and exercises: Chapter 6.
Lab: Exercises for Chapter 6 (for example, 2-5, 10-12).
Lab: The Die and CrapsGame classes for Craps: fill in the blanks and test in isolation (Section 6.9).
Lab: Finishing and testing the Craps program (Section 6.12).

7. Algorithms and iterations (Weeks 10-12; duration 3 weeks)

Reading and exercises: Chapter 7.
Lab: Exercises for Chapter 7 (for example, 1 - 11, 13, pp. 199-201).
Lab: Print stars using iterations (Exercise 20, p. 204).
Case study and lab: Euclid’s GCF algorithm (Section 7.7 and Exercise 26 on p. 206).
Lab: Perfect Numbers (Section 7.8).

Interlude: Ethical and social implications of computer use (Week 13, 1 week)

Student papers, presentations, and debates on ethical and social issues related to the use of computers and the Internet.

Reading: Sections 28.3 - 28.5; current news and commentary in the online media.
Unit 4: Strings and arrays (4 weeks)

8. Strings (Week 14; duration 1 week)

Reading and exercises: Chapter 8.
Lab: Magpie, Activities 1 and 2. Lab: Lipograms (Section 8.8).

9. One-dimensional arrays (Weeks 15-16; duration 1.5 weeks)

Reading and exercises: Chapter 9.
Lab: Fortune Teller (Section 9.3). Lab: Magpie, Activity 5.
Lab: Past free-response questions on arrays. Case study and lab: The Sieve or Eratosthenes (Section 9.8).

10. Two-dimensional arrays (Weeks 16-17; duration 1.5 weeks)

Declaring and initializing two-dimensional arrays. Accessing the number of rows and columns. Traversals and nested “for-each” loops.

Reading and exercises: Chapter 9.
Lab: Past free-response questions on arrays. Lab: Chomp (Section 9.5).

Unit 5: Classes and class hierarchies (6 weeks)

11. Details of defining classes and using objects (Weeks 18-19; duration 2 weeks)

Reading and exercises: Chapter 10.
Case study: the Fraction class (Sections 10.1 - 10.8).
Case study and lab: Snack Bar (Section 10.9).
Lab: Snack Bar Continued (Section 10.12).
12. **ArrayList (Weeks 20-21; duration 2 weeks)**

Reading and exercises: Chapter 11.
Be Prepared, Section 2.5.
Lab: Shuffler (Section 11.4). [CR2b, CR4]
Lab: Creating an index for a document — using ArrayList and writing a subclass of ArrayList (Section 11.6). [CR2b, CR4]
Lab: Past AP free-response questions on ArrayList.
Lab: ECG Analysis (Be Prepared, Practice Exam 3, Question 1). [CR1, CR2b, CR6]

13. **Class hierarchies, abstract classes, and interfaces (Weeks 22-23; duration 2 weeks)**

Reading and exercises: Chapter 12.
Case study: Happy Birthday Balloon — writing a subclass of an abstract class Balloon (Section 12.5). [CR1, CR4, CR6]
Lab: Baker’s Dozen (Be Prepared, Practice Exam 1, Question 2) — writing a class that implements an interface and a client class. [CR1, CR4, CR6]
Lab: ChatBots — implementing a small hierarchy of classes starting with an abstract class (Be Prepared, Practice Exam 4, Question 3). [CR1, CR4, CR6]
Lab: Past AP free-response questions on class hierarchies and polymorphism. [CR1, CR4]

Unit 6: Recursion, searching and sorting (4 weeks)

14. **Recursion (Week 24; duration 1 week)**

Recursive methods. Base case. Understanding and debugging recursive methods. When not to use recursion. [CR3]

Reading and exercises: Chapter 13 and Sections 23.3 - 23.5.
Lab: Chapter 13 exercises (for example, 6, 10 pp. 372 - 373). [CR1, CR6]
Lab: The Tower Of Hanoi (Section 23.5). [CR1, CR6]

15. **Searching and sorting. Introduction to analysis of algorithms. (Weeks 25-27; duration 3 weeks)**

Comparing objects. The equals method and the Comparable interface. Sequential and Binary Search. The number of comparisons required in Sequential and Binary Search. Selection Sort, Insertion Sort, and Mergesort. Comparison of efficiency of “quadratic” sorting algorithms (Selection Sort and Insertion Sort) vs. Mergesort.

Reading and exercises: Chapter 14.
Lab: Chapter 14 exercises.
Lab: Keeping Things in Order (Section 14.4). [CR1, CR2a, CR6]
Lab: Benchmarks (Section 14.9) — compares efficiency of several sorting algorithms. [CR2a]
Unit 7: Review (3 weeks)

16. Review and practice for the AP exam (Weeks 28-30; duration 3 weeks)

Reading: Be Prepared Chapters 1-5; Be Prepared Chapter 6 (past free-response questions and solutions), Be Prepared practice exams 1-5, 250 Multiple-Choice Computer Science Questions in Java.

Unit 8: Enrichment (optional, duration varies)

17. Streams and files

Text and binary files. Streams vs. random-access files. Java I/O package. The Scanner class. Checked exceptions.

Reading and exercises: Chapter 15.
Lab: Choosing Words (Section 15.5).
Lab: Exercises and projects from exercises and the Test Package for Chapter 15.

18. Graphics and GUI

Reading and exercises: Chapters 16, 17, 18.
Lab: Pieces of the Puzzle (Section 16.7).
Programming project: Ramblecs (Section 17.6).
Lab: Slide Show (Section 18.7).

Unit 9: After the AP Exam (Duration varies)

Projects that demonstrate creative computer use.

Other suggested activities: a team project to implement a game (for example, the Game of SET, http://www.skylit.com/projects/ or the Elevens lab); or a potentially useful project for the school.