

JJaavvaa
MMeetthhooddss

Object-Oriented Programming
and

Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin

Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Second AP* Edition
— with GridWorld

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2011 by Maria Litvin, Gary Litvin, and
Skylight Publishing

This material is provided to you as a supplement to the book
Java Methods, second AP edition You may print out one
copy for personal use and for face-to-face teaching for each
copy of the Java Methods book that you own or receive from
your school. You are not authorized to publish or distribute
this document in any form without our permission. You are
not permitted to post this document on the Internet. Feel
free to create Internet links to this document’s URL on our
web site from your web pages, provided this document won’t
be displayed in a frame surrounded by advertisement or
material unrelated to teaching AP* Computer Science or
Java. You are not permitted to remove or modify this
copyright notice.

Library of Congress Control Number: 2010915303

ISBN 978-0-9824775-7-1

* AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
product manufacturers or trademark owners.

Oracle, Java, and Java logos are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates in the U.S. and other countries.

SCRABBLE® is the registered trademark of HASBRO in the United States and Canada and
of J.W. Spear and Sons, PLC, a subsidiary of Mattel, Inc., outside the United States and
Canada.

Chapter 16Height Ascent

Descent
Baseline

16 Graphics

16.1 Prologue 16-2
16.2 paint, paintComponent, and repaint 16-4
16.3 Coordinates 16-7
16.4 Colors 16-10
16.5 Drawing Shapes 16-11
16.6 Fonts and Text 16-13
16.7 Case Study and Lab: Pieces of the Puzzle 16-14
16.8 Summary 16-21
 Exercises 	

 16-1

16-2 CHAPTER 16 ~ GRAPHICS

16.1 Prologue

What you see on your computer screen is ultimately determined by the contents of
the video memory (VRAM) on the graphics adapter card. The video memory
represents a rectangular array of pixels (picture elements). Each pixel has a particular
color, which can be represented as a mix of red, green, and blue components, each
with its own intensity. A typical graphics adapter may use eight bits to represent
each of the red, green, and blue intensities (in the range from 0 to 255), so each color
is represented in 24 bits (that is, three bytes). This allows for 224 = 16,777,216
different colors. With a typical screen resolution of 1680 by 1050 pixels, your
adapter needs 1680 ⋅ 1050 ⋅ 3 bytes — a little over 5 MB — to hold the picture for
one screen. The picture is produced by setting the color of each pixel in VRAM.
The video hardware scans the whole video memory continuously and refreshes the
image on the screen.

A graphics adapter is what we call a raster device: each individual pixel is changed
separately from other pixels. (This is different from a vector device, such as a
plotter, which can draw a line directly from point A to point B.) To draw a red line or
a circle on a raster device, you need to set just the right group of pixels to the red
color. That’s where a graphics package can help: you certainly don’t want to
program all those routines for setting pixels yourself.

A typical graphics package has functions for setting drawing attributes, such as color,
line style and width, fill texture or pattern for filled shapes, and font for text, and
another set of functions for drawing simple shapes: lines, arcs, circles and ovals,
rectangles, polygons, text, and so on. Java’s graphics capabilities are based on the
Graphics class and the Graphics2D package. The Graphics class is pretty
rudimentary: it lets you set the color and font attributes and draw lines, arcs, ovals
(including circles), rectangles, rectangles with rounded corners, polygons, polylines
(open polygons), images, and text. There are “draw” and “fill” methods for each
basic shape (for example, drawRect and fillRect).

The Graphics2D class is derived from Graphics and inherits all its methods. It
works with a number of related interfaces and classes:

 16.1 ~ PROLOGUE 16-3

 y The Shape interface and classes that implement it (Line2D, Rectangle2D,
Ellipse2D, etc.) define different geometric shapes.

 y The Stroke interface and one implementation of it, BasicStroke, represent
in a very general manner the line width and style for drawing lines.

 y The Paint interface and its implementations Color, GradientPaint, and
TexturePaint represent a color, a color gradient (gradually changing color),
and a texture for filling in shapes, respectively.

Graphics2D also adds methods for various coordinate transformations, including
rotations.

More importantly, Graphics2D adds a capability for treating shapes
polymorphically. In the Graphics class, contrary to the OOP spirit, shapes are not
represented by objects, and there is a separate special method for drawing each shape.
Suppose you are working on a drawing editor program that allows you to add
different shapes to a picture. You keep all the shapes already added to the picture in
some kind of a list. To redraw the picture you need to draw all the shapes from the
list. With Graphics you have to store each shape’s identification (such as “circle,”
“rectangle,” etc.) together with its dimensions and position and use a switch or an
if-else statement to call the appropriate drawing method for each shape.

With Graphics2D, you can define different shapes (objects of classes that
implement the Shape interface) and store references to them in your list. Each shape
provides a “path iterator” which generates a sequence of points on that shape’s
contour. These points are used by Graphics2D’s draw(Shape s) and
fill(Shape s) methods. Thus, shapes are treated in a polymorphic manner and at
the same time are drawn using the currently selected Paint and Stroke. If your
own class implements Shape and supplies a getPathIterator method for it, then
your “shapes” will be drawn properly, too, due to polymorphism.

Like any package with very general capabilities, Graphics2D is not easy to use. We
will stay mostly within the limits of the Graphics class, but, if you are adventurous,
you can examine the Graphics2D API and learn to use some of its fancy features.

In the following sections we will examine Java’s event-driven graphics model and
review the basic drawing attributes and methods of the Graphics class. We will
then use its capabilities to write a simple Puzzle program in which a player rearranges
the pieces of a scrambled picture.

16-4 CHAPTER 16 ~ GRAPHICS

16.2 paint, paintComponent, and repaint

In Java, the hardest thing may be figuring out when and where to draw, rather than
how. Java’s graphics are necessarily event-driven because applets and applications
run under multitasking operating systems. Suppose you are playing Solitaire when
all of a sudden you decide to check your e-mail. You bring up your e-mail and its
window overlaps a part of the Solitaire window. When you close or minimize your
e-mail application, the operating system has to redisplay the Solitaire window. The
operating system sends the Solitaire program a message that its window has been
partially wiped out and now needs to be “repainted.” Solitaire must be ready to
dispatch a method in response to this “repaint” message.

In Java, this method is called paint. paint is a void method that receives one
parameter of the type Graphics, usually named g:

 public void paint(Graphics g)
 {
 ...
 }

g defines the graphics context: the size and position of the picture, the current
attributes (color, font), the clipping area for the picture, and so on.

An object of the JApplet or JFrame type has a default paint method that calls the
paintComponent method for each of the components (buttons, labels, text edit
fields, etc.) in the object’s “content pane” container. If you derive your main class
from JApplet or JFrame, which is usually the case, and you want to do some
drawing on your window, you can override the inherited paint method by defining
your own. The first statement in your paint most likely will be a call to the base
class’s paint:

 public void paint(Graphics g)
 {
 super.paint(g);
 ...
 }

After that you can add your own statements. That’s exactly what we did in
JM\Ch02\HelloGui\HelloApplet.java:

 16.2 ~ paint, paintComponent, AND repaint 16-5

 public void paint(Graphics g)
 {
 super.paint(g); // call JApplet's paint method
 // to paint the background
 g.setColor(Color.RED);
 g.drawRect(25, 40, 150, 45); // draw a rectangle 150 by 45
 g.setColor(Color.BLUE);
 g.drawString("Hello, Applet!", 60, 65);
 }

Naturally, paint does not have to define all the drawing work in its own code. It
can call other methods, passing g to them as one of the parameters.

paint is called automatically in response to certain messages received from the
operating system. But sometimes your program needs to repaint the window itself
after changing its appearance. It can’t call paint directly because it does not have a
valid Graphics parameter, a g, to pass to it. Instead your program calls the
repaint method, which does not take any parameters. repaint places a request to
repaint the window into the event queue, and in due time the paint method is
invoked.

paint is the central drawing method for your application window, where all drawing
originates. Therefore, it must handle all the different drawing requirements for all the
different situations in which the application might find itself. This is not easy.
Fortunately, in Java’s Swing GUI package, you can redefine the painting of
individual GUI components. Each type of component (a JButton object, a
JTextField object, etc.) has its own default paintComponent method.
paintComponent also takes one parameter, Graphics g. You can derive a class
from any of these classes and redefine paintComponent in it. It is not very
common, though, to draw on top of buttons or text edit fields. But your class can
extend JComponent or JPanel. The default paintComponent method in JPanel
just paints its background. You can derive your own class from JPanel and add
your drawing in your own paintComponent method. Again, it will usually start by
calling the base class’s paintComponent.

That is precisely what we did in Hello Graphics, Craps, Snack Bar, Chomp, Dance
Studio and other programs. In Craps, for instance, we derived a class CrapsTable
from JPanel (JM\Ch07\Craps\CrapsTable.java):

public class CrapsTable extends JPanel
 ...

16-6 CHAPTER 16 ~ GRAPHICS

We then provided our own paintComponent method for it:

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);
 die1.draw(g);
 die2.draw(g);
 }

When you need to repaint a component, you call its repaint method. (A
component’s repaint is different from JFrame’s repaint: it calls
paintComponent only for this particular component.) In Craps, when the dice roll,
we adjust their positions and call table’s repaint:

 // Processes timer events
 public void actionPerformed(ActionEvent e)
 {
 if (diceAreRolling())
 {
 ...
 }
 else
 {
 ...
 }

 repaint();
 }

Note that repaint just sends a request message to repaint the window
or a component, and this request goes into the event queue. The actual
painting may be postponed until your program finishes processing the
current event and other events that are earlier in the event queue.

By painting individual components in Swing you can implement smoother
animations. Without this capability you would have to repaint the whole window
when just one small part of it has changed. We will return to the subject of using
JPanel and see another example later in this chapter, in the Pieces of the Puzzle case
study.

� � �

An insightful reader may wonder at this point: how can we call Graphics2D
methods if all we get in paint or paintComponent is a reference to Graphics g?
The truth is that g is a Graphics2D reference in disguise. It is presented as
Graphics simply for compatibility with earlier versions of Java. To use it for

 16.3 ~ COORDINATES 16-7

calling Graphics2D methods you simply have to cast it into Graphics2D. For
example:

 Graphics2D g2D = (Graphics2D)g;
 g2D.setPaint(new GradientPaint(0, 0, Color.RED,
 100, 100, Color.BLUE, true));
 < ... etc. >

16.3 Coordinates

The graphics context g, passed to paint and paintComponent, defines the
coordinate system for the drawing. As in most computer graphics packages, the
y-axis points down, not up as in math (Figure 16-1).

By default, the Graphics class places the origin at the upper-left corner
of the content area of the application window (for paint) or in the
upper-left corner of the component (for paintComponent). The
coordinates are integers, and the units are pixels.

The translate(x, y) method shifts the origin to the point (x, y). In the
Graphics2D class, there are methods to scale and rotate the coordinates.

x

y

Figure 16-1. Graphics coordinates: y-axis points down

Graphics also sets the clipping rectangle to the window’s drawing area or the
component’s drawing area. Anything outside the clipping rectangle does not show
up on the screen. Therefore, one component’s paintComponent method usually

16-8 CHAPTER 16 ~ GRAPHICS

can’t paint over other components that do not overlap with it. Graphics has a
method setClip for redefining the clipping rectangle.

What about scaling? As a programmer, you decide what happens when the
application window is resized. In some applications (like Craps or Snack Bar) you
may want to simply disallow resizing the window (by calling JFrame’s method
setResizable(false)). In other programs (like Lipogrammer) you may rely on
Java’s component layout manager to adjust the positions of the components on the
window. You may choose to adjust the positions of some of the graphics elements in
the picture, but not their sizes. Or you may want everything scaled, as in the Puzzle
program later in this chapter.

You may lose some precision when scaling coordinates, but the high resolution
(number of pixels per unit length) of modern graphics adapters makes these
inaccuracies hardly visible.

Each component provides getWidth and getHeight methods that
return the current width and height of the component in pixels. You
can scale the coordinates based on these values.

Suppose you want to draw a filled red rectangle with its center at the center of the
panel and its size equal to 75 percent of the panel’s size. On top of it you want to
draw a filled blue oval inscribed into the rectangle (Figure 16-2). This can be
accomplished as follows:

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g); // call JPanel's paintComponent

 int width = getWidth();
 int height = getHeight();
 int xSize = (int)(.75 * width);
 int ySize = (int)(.75 * height);
 int x0 = width/2 – xSize/2; // Coordinates of the
 int y0 = height/2 – ySize/2; // upper-left corner

 g.setColor(Color.RED);
 g.fillRect(x0, y0, xSize, ySize);
 g.setColor(Color.BLUE);
 g.fillOval(x0, y0, xSize, ySize);
 }

 16.3 ~ COORDINATES 16-9

Figure 16-2. A filled oval inscribed into a filled rectangle

The above example shows not only how a drawing can be scaled, but also how the
positions of simple shapes (rectangles, ovals) are passed to drawing methods. The
position and size of a rectangle are described by the x and y coordinates of its
upper-left corner and by its width and height. In the above example we subtract half
the size of the rectangle from the coordinates of the center of the panel to determine
where the upper-left corner should be.

The position and size of a rounded rectangle, an oval, and even an arc
are described by the position of the rectangle in which those shapes are
inscribed (Figure 16-3).

In the above code the same parameters are passed to fillRect and fillOval
because the oval is inscribed into the rectangle.

Figure 16-3. Positioning of ovals, arcs, and rounded rectangles

16-10 CHAPTER 16 ~ GRAPHICS

16.4 Colors

We have already used the setColor method whose parameter is a Color object.
The Color class has thirteen predefined constants for colors (WHITE, BLACK, GRAY,
LIGHT_GRAY, DARK_GRAY, BLUE, GREEN, CYAN, RED, MAGENTA, PINK, ORANGE, and
YELLOW). You can also construct your own color by specifying its red, green, and
blue components:

 int redValue = 18, greenValue = 50, blueValue = 255;
 Color c = new Color(redValue, greenValue, blueValue);
 g.setColor(c);

or simply:

 g.setColor(new Color(18, 50, 255));

A Color object also has the methods brighter and darker, which return a new
color made from the original color by adjusting its brightness. For example:

 g.setColor(Color.ORANGE.darker().darker());

You can set the background color for a component by calling that
component’s setBackground method. This method only specifies the
new background color but does not automatically repaint the
component. If you set the background inside your paintComponent
method, do it before calling super.paintComponent. If you do it
elsewhere, call repaint.

The Java default color for components is gray, and we often change it to white:

 setBackground(Color.WHITE);

RGB numbers for different colors can be obtained from painting and imaging
programs and color choosing tools on the web rgbcolors or from Java’s own
JColorChooser class.

 16.5 ~ DRAWING SHAPES 16-11

16.5 Drawing Shapes

Figure 16-4 summarizes the drawing methods of the Graphics class.

g.drawLine(x1, y1, x2, y2);

g.clearRect(x, y, width, height);
g.drawRect(x, y, width, height);
g.fillRect(x, y, width, height);

g.drawOval(x, y, width, height);
g.fillOval(x, y, width, height);
g.drawRoundRect(x, y, width, height, horzDiam, vertDiam);
g.fillRoundRect(x, y, width, height, horzDiam, vertDiam);

g.draw3DRect(x, y, width, height, isRaised);
g.fill3DRect(x, y, width, height, isRaised);

g.drawArc(x, y, width, height, fromDegree, measureDegrees);
g.fillArc(x, y, width, height, fromDegree, measureDegrees);

g.drawPolygon(xCoords, yCoords, nPoints);
g.fillPolygon(xCoords, yCoords, nPoints);
g.drawPolyline(xCoords, yCoords, nPoints);

g.drawString(str, x, y);

g.drawImage(image, x, y, this);

Figure 16-4. The drawing methods of the Graphics class

The drawLine(x1, y1, x2, y2) method draws a straight line from (x1, y1) to
(x2, y2).

There are several methods for drawing and filling rectangles, ovals, and arcs:
clearRect, drawRect, fillRect, drawRoundRect, fillRoundRect,
draw3DRect, fill3DRect, drawOval, fillOval, drawArc, and fillArc. We
have already used most of them in one project or another, so they should look
familiar. The first four parameters in each of these methods are the same: the x and y
coordinates of the upper-left corner, and the width and height of the bounding
rectangle (as explained in Section 16.3). The clearRect method fills the rectangle

16-12 CHAPTER 16 ~ GRAPHICS

with the component’s current background color. The drawRoundRect and
fillRoundRect methods take two additional parameters: the horizontal and vertical
diameters of the oval used to round the corners. The draw3DRect and fill3DRect
methods add a shadow on two sides to hint at a 3-D effect. Their fifth parameter can
be either true for a “raised” rectangle or false for a “lowered” rectangle.

The drawArc and fillArc methods, respectively, draw and fill a fragment of an
oval inscribed into the bounding rectangle. fillArc fills a sector of the oval (a slice
of the pie) bound by the arc. The fifth and sixth parameters in these methods are the
beginning angle (with the 0 at the easternmost point) and the measure of the arc in
degrees (going counterclockwise).

� � �

The drawPolygon and fillPolygon methods take three parameters: the array of
x-coordinates of the vertices, the array of y-coordinates of the vertices, and the
number of points:

 drawPolygon(int[] xCoords, int[] yCoords, int n)

The number of points n should not exceed the smaller of xCoords.length and
yCoords.length. As you can see, the xCoords and yCoords arrays do not have
to be filled to capacity: they may hold fewer points than their size allows. This is
convenient if you are adding points interactively or if you are reading them from a
file and don’t know in advance how many points you will end up with.

drawPolygon and fillPolygon automatically connect the last point to the first
point and draw or fill a closed polygon, respectively. So

 g.drawPolygon(xCoords, yCoords, n);

is basically the same as:

 for (int i = 0; i < n – 1; i++)
 {
 g.drawLine(xCoords[i], yCoords[i], xCoords[i+1]; yCoords[i+1]);
 }
 g.drawLine(xCoords[n-1], yCoords[n-1], xCoords[0]; yCoords[0]);

The drawPolyline method works the same way as drawPolygon, but it does not
connect the last point to the first.

 16.6 ~ FONTS AND TEXT 16-13

16.6 Fonts and Text

The setFont method lets you set the font for drawing text. Java uses an object of
the Font class to describe a font. Font objects are used for graphics text displayed
with g.drawString and for text in various GUI components (JLabel,
JTextField, JTextArea, JButton, etc.). The Graphics method for setting a
font and the methods for setting a font in Swing components share the same name,
setFont.

A font is described by its name, its style, and its size.

Font names are system-dependent, but Java guarantees that at least three font names
are always recognized:

 y "Serif", a proportional font, in which letters may have different widths, with
serifs, or little decorative strokes, like Times Roman: ABCabc

 y "SansSerif", a proportional font without serifs, like Arial: ABCabc

 y "Monospaced", a fixed-width font where all characters have the same width,
like Courier: ABCabc

The GraphicsEnvironment class has a getAllFonts() method that returns an
array of all the fonts available in the system. For example:

 GraphicsEnvironment env =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 Font[] allFonts = env.getAllFonts();

Each font can come in four styles: Font.PLAIN, Font.BOLD, Font.ITALIC, or
Font.BOLD | Font.ITALIC (the bit-wise combination of the two attributes,
meaning both bold and italic).

The font size is specified in points. In typography, a point is 1/72 of an inch, but this
measure loses its meaning when the text is scaled to a computer screen. For default
coordinates, Java assumes that one point is equal to one pixel.

You can create all the fonts you need ahead of time (possibly, in the constructor for
your drawing panel). For example:

 Font font1 = new Font("Monospaced", Font.PLAIN, 20);
 Font font2 = new Font("Serif", Font.BOLD, 30);

16-14 CHAPTER 16 ~ GRAPHICS

Then you set the font with setFont. For example:

 g.setFont(font2);

If you intend to use a font only once, you can create an anonymous font on the fly:

 g.setFont(new Font("Serif", Font.BOLD, 30));

For very precise text positioning, Graphics has a method getFontMetrics that
returns a FontMetrics object. This object, in turn, has getAscent, getDescent,
and getHeight methods that return the font’s vertical measurements (Figure 16-5).

GlyphHeight Ascent

Descent
Baseline

Figure 16-5. Font metrics

The Graphics class’s drawString(text, x, y) method draws the text string.
This method positions the left end of the text’s baseline at the point (x, y).

16.7 Case Study and Lab: Pieces of the Puzzle

In this section we will create a program Puzzle to implement a simple puzzle that
involves rearranging pieces of a picture. The program first shows a picture made of
nine pieces on a 3 by 3 grid. After two seconds, it scrambles the pieces randomly and
shows the scrambled picture. The player has to restore the picture by moving the
pieces around. There is an extra empty cell below the picture for holding a piece
temporarily (Figure 16-6). The player can move a piece by “picking it up,” then
“dropping” it into the empty cell. To pick up a piece the player clicks on it. This is
acknowledged by some feedback; for example, the picked piece gets a different
background color. To “drop” the piece the player clicks on the empty cell.

 16.7 ~ CASE STUDY AND LAB: PIECES OF THE PUZZLE 16-15

Play with this program (click on JM\Ch16\Puzzle\Puzzle.jar) to get a feel for
how it works. In this version the initial picture is not very creative: it simply shows a
circle and the numbers of the pieces (numbered from left to right and top to bottom
like a telephone keypad). Examine the code for the Puzzle class in
JM\Ch16\Puzzle. As you can see, the program processes one timer event and after
that is driven by mouse events. The Puzzle class implements a MouseListener
interface by providing its five required methods. Of them only mousePressed is
used. There is a way to not include unused methods (using a so-called adapter
class), but we just use empty methods.

Figure 16-6. The Puzzle program

The pieces of the puzzle are numbered from 1 to 9, and the number 0 represents the
empty cell. Before scrambling, the pieces are arranged as follows:

 1 2 3
 4 5 6
 7 8 9
 0

The program uses an array of cells to hold the pieces. Each cell in the puzzle
“knows” which piece it is currently holding. That number is returned by the cell’s
getPieceNumber method and can be set by the cell’s setPieceNumber(k)

16-16 CHAPTER 16 ~ GRAPHICS

method. In the initial non-scrambled picture, the index of each cell in the array
matches the number of the piece displayed in it.

The logic for moving the pieces is pretty straightforward. When a mouse clicks on
the program’s window, the mousePressed method is called:

 public void mousePressed(MouseEvent e)
 {
 int x = e.getX();
 int y = e.getY();

 // Figure out the index of the cell that was clicked:
 int col = 3 * x / getWidth();
 int row = 4 * y / getHeight();
 int i = 3 * row + col;
 if (i >= 0 && i < 9)
 i++;
 else if (i == 10)
 i = 0;
 else
 return;

 if (pickedIndex < 0)
 pickPiece(i);
 else
 dropPiece(i);
 }

It gets the coordinates of the click and figures out in which cell i it occurred. Then it
can go two different ways, depending whether there is already a picked-up piece
“hanging in the air” or not. The Puzzle class has a field pickedIndex that holds
the index of the cell whose piece has been picked up. If there is no picked piece,
pickedIndex is equal to -1. Then if the player has clicked on a non-empty cell, the
puzzle piece is (logically) “lifted” from that cell. The cell is highlighted, and its
index i is saved in pickedIndex for future use. The pickPiece method
implements this (Figure 16-7).

If, on the other hand, there is already a piece “in the air” (pickedIndex ≥ 0) and the
player has clicked on the empty cell (the cell holding the 0 piece), then the piece that
was picked up earlier is “dropped” into that cell. The cell is updated to reflect that it
now holds a piece with a particular number while the previously picked cell is set to
empty. This is implemented in the dropPiece method (Figure 16-7).

Figure 16-8 shows a little state machine with two states that represents this logic. A
state machine is a model that uses nodes to represent different possible states (of a
system or a program) and connecting arrows to represent the rules for changing
states.

 16.7 ~ CASE STUDY AND LAB: PIECES OF THE PUZZLE 16-17

 ...

 private void pickPiece(int i)
 {
 if (cells[i].getPieceNumber() != 0) // pick only non-empty cells
 {
 pickedIndex = i;
 cells[i].setPicked(true);
 cells[i].repaint();
 }
 else
 {
 bzz.play();
 }
 }

 private void dropPiece(int i)
 {
 if (cells[i].getPieceNumber() == 0) // drop only on the empty cell
 {
 // Set the empty cell's number to the picked piece
 int k = cells[pickedIndex].getPieceNumber();
 cells[i].setPieceNumber(k);
 cells[i].repaint();

 // Set the piece number for the source cell to "empty"
 cells[pickedIndex].setPieceNumber(0);
 cells[pickedIndex].setPicked(false);
 cells[pickedIndex].repaint();

 pickedIndex = -1; // nothing picked now
 if (allSet())
 bells.play();
 else
 drop.play();
 }
 else
 {
 bzz.play();
 }
 }

 ...

Figure 16-7. pickPiece and dropPiece methods in the Puzzle class
(JM\Ch16\Puzzle\Puzzle.java)

16-18 CHAPTER 16 ~ GRAPHICS

Click on a non-empty cell i

 Set pickedIndex to i.

 Mark cell i as “picked.”

Click on the empty cell i

 Get cell number from
cell[pickedIndex] and set
piece number in cell i to it.

 Mark cell[pickedIndex]
as empty.

 Set pickedIndex to -1
(no picked piece).

pickedIndex = -1
(no picked piece)

pickedIndex >= 0
(picked piece
“in the air”)

Figure 16-8. State machine diagram for moving pieces in the

Puzzle program

� � �

The trickier part is to display different pieces of the puzzle in different cells. The
question is: How can we show a particular piece in a cell? One approach would be to
have a separate method draw each of the nine pieces of the puzzle. This might work,
but only for very simple pictures. In the real puzzle we want to use drawings whose
lines cut across the grid lines; to draw separate fragments of them would be a
nightmare.

A better approach would be to use one method to draw the whole picture, but show
only the appropriate piece of it in each cell. We use a separate panel for each of the
ten cells. Each panel can be an object of the same class that we derive from JPanel.
Each panel will use the same paintComponent method to draw the whole big
picture, but only part of it will be visible on the panel. All we have to do is shift the
origin of the coordinate system appropriately for each panel, depending on what
puzzle piece it currently holds. For example (Figure 16-9), in order to draw piece
number 6 correctly, no matter where it is currently located, the origin of its
coordinate system should be shifted up by one cell height and to the left by two cell
widths (with minor adjustments for the gaps between cells).

JFrame’s default paint method will automatically paint all the panels for us.

 16.7 ~ CASE STUDY AND LAB: PIECES OF THE PUZZLE 16-19

 x

y
Figure 16-9. The offset of relative coordinates

for a piece of the puzzle

Now our plan of action is clear. Our program will use two classes. The first one,
Puzzle, is the main class derived from JFrame. The second class, let’s call it
PuzzleCell, will be derived from JPanel. The program declares and initializes an
array of ten PuzzleCell objects, one for each cell on the 3 by 3 grid and an extra
empty cell. The cells are indexed 0, 1, 2, ..., 9. We first place cells 1 through 9 on
the puzzle grid starting from the upper-left corner, then we place cell 0 in the middle
of the fourth row (the program’s layout actually uses a 4 by 3 grid).

Each PuzzleCell object holds a number representing the piece of the picture it
currently displays. When a cell is created, the piece number is passed as a parameter
to its constructor. At the beginning, before the picture is scrambled, the piece
number is set to that cell’s index. The code in Puzzle’s constructor creates the cells
and adds them to the program’s content pane:

 public Puzzle()
 {
 ...

 Container c = getContentPane();
 c.setLayout(new GridLayout(4, 3, 1, 1));
 // 4 by 3; horz gap 1, vert gap 1
 cells = new PuzzleCell[10];

 for (int i = 1; i <= 9; i++)
 {
 cells[i] = new PuzzleCell(i);
 c.add(cells[i]);
 }

 ...
 }

16-20 CHAPTER 16 ~ GRAPHICS

After showing the original picture we need to scramble it. To do that, we initialize a
temporary array with values 1 through 9 and shuffle it, then assign the shuffled
numbers to cells 1 through 9:

 // Scramble the puzzle by setting shuffled numbers 1 through 9
 // to the puzzle cells:
 int[] numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9};

 shuffle(numbers);
 for (int i = 1; i <= 9; i++)
 {
 int k = numbers[i-1];
 cells[i].setPieceNumber(k);
 }

Set up a project with the three Java files from JM\Ch16\Puzzle folder:
Puzzle.java, PuzzleCell.java, and EasySound.java. Copy the three audio
clip .wav files from JM\Ch16\Puzzle to the folder that will hold your compiled
class files.

As a warm-up exercise, write the code for the Puzzle class’s shuffle method (see
Question 12 in the exercises for Chapter 14). This method should rearrange the
elements of a given array in random order. The algorithm is very similar to Selection
Sort, only instead of choosing the largest among the first n elements, you choose an
element randomly among the first n elements and swap it with the n-th element. This
algorithm produces all possible arrangements with equal probabilities.

As another little exercise, write the Puzzle class’s allSet method, which returns
true if all pieces have been returned to their proper places and false otherwise.
Call the getPieceNumber method for each of the cells and compare its returned
value with the cell number.

And now to the serious business. Fill in the blanks in the PuzzleCell class’s
paintComponent method. First set the background color — white for a non-picked
piece and yellow for a picked piece — and call super.paintComponent. Then
shift the origin appropriately, based on the value of PuzzleCell’s pieceNumber
field, which represents the number of the piece this panel (cell) is supposed to show.
Recall that the panel’s getWidth and getHeight methods return the dimensions of
the panel. You need to adjust them slightly to compensate for the gaps between
panels. Finally, call a method that paints your picture.

 16.8 ~ SUMMARY 16-21

Test your code first with the simple picture (a circle and cell numbers) provided. It
will also help you test your shuffle method and your coordinate offsets. The
purpose of the circle is to test how the pieces fit together — make sure your circle
looks smooth. After you get it working, create a different picture of your choice for
the puzzle. For instance, you can draw circles, polygons, or letters of different sizes
and colors that intersect the grid. Make sure your picture is fully scalable, so that if
the program’s window shrinks or stretches, the picture shrinks or stretches with it.
Find several five- to seven-year-olds and test your working puzzle on them.

16.8 Summary

Java provides a straightforward but limited class Graphics for drawing simple
shapes and graphics text. The Graphics2D package is much more powerful but
harder to use.

Since Java applets and applications are event-driven, all drawing must originate
either in the paint method of the applet or application window or in the
paintComponent method of one of the Swing components (usually an object of a
class derived from JComponent or JPanel). paint and paintComponent take
one parameter, Graphics g, which defines the graphics context for this component.
If the application needs to repaint its component, it calls repaint, which takes no
parameters. The repaint request is added to the events queue and eventually
paintComponent is called.

The Java coordinate system has the origin in the upper-left corner of the window or
panel, with the y-axis pointing down. The coordinates are integers, and their units are
pixels. The drawLine method draws a line segment described by the coordinates of
its beginning and end. A rectangle is described by the x, y coordinates of its upper-
left corner, width, and height. An oval, a rounded rectangle, and even an arc is
defined by the position of the bounding rectangle into which it is inscribed. Besides
filled or hollow rectangles, rounded rectangles, ovals, and arcs, Graphics can draw
polygons and polylines.

You can set the current drawing color by calling g.setColor(…), which takes a
Color object as its parameter. To set the background color, call the component’s
setBackground method.

You can display graphics text by calling the drawString method; to choose a
desired font, call setFont.

16-22 CHAPTER 16 ~ GRAPHICS

	 Exercises 	

The exercises for this chapter are in the book (Java Methods: Object-Oriented
Programming and Data Structures, 2nd AP Edition, ISBN 978-0-9824775-7-1,
Skylight Publishing, 2011 [1]).

http://www.skylit.com/

	Graphics
	16.1 Prologue
	16.2 paint, paintComponent, and repaint
	16.3 Coordinates
	16.4 Colors
	16.5 Drawing Shapes
	16.6 Fonts and Text
	16.7 Case Study and Lab: Pieces of the Puzzle
	16.8 Summary

