

JJaavvaa
MMeetthhooddss

Object-Oriented Programming
and

Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin

Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Second AP* Edition
— with GridWorld

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2011 by Maria Litvin, Gary Litvin, and
Skylight Publishing

This material is provided to you as a supplement to the book
Java Methods, second AP edition You may print out one
copy for personal use and for face-to-face teaching for each
copy of the Java Methods book that you own or receive from
your school. You are not authorized to publish or distribute
this document in any form without our permission. You are
not permitted to post this document on the Internet. Feel
free to create Internet links to this document’s URL on our
web site from your web pages, provided this document won’t
be displayed in a frame surrounded by advertisement or
material unrelated to teaching AP* Computer Science or
Java. You are not permitted to remove or modify this
copyright notice.

Library of Congress Control Number: 2010915303

ISBN 978-0-9824775-7-1

* AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
product manufacturers or trademark owners.

Oracle, Java, and Java logos are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates in the U.S. and other countries.

SCRABBLE® is the registered trademark of HASBRO in the United States and Canada and
of J.W. Spear and Sons, PLC, a subsidiary of Mattel, Inc., outside the United States and
Canada.

Chapter 27

27 Design Patterns

27.1 Prologue 27-2
27.2 Façade 27-3
27.3 Strategy 27-5
27.4 Singleton 27-6
27.5 Decorator 27-9
27.6 Composite 27-15
27.7 MVC (Model-View-Controller) 27-17
27.8 Summary 27-23
 Exercises 	

 27-1

27-2 CHAPTER 27 ~ DESIGN PATTERNS

27.1 Prologue

Object-oriented design is not easy — designing a software application often takes
more time than coding it, and design errors may be more costly than errors in the
code. Design patterns represent an attempt by experienced designers to formalize
their experience and share it with novices. Design patterns help solve common
problems and avoid common mistakes.

The idea of design patterns came to OOP from an influential writer on architecture,
Christopher Alexander [1]. In his books, The Timeless Way of Building* and A
Pattern Language,** Alexander introduced design patterns as a way to bring some
order into the chaotic universe of arbitrary architectural design decisions: how rooms
should be connected or where windows should be placed. In A Pattern Language,
Alexander and his co-authors catalogued 253 patterns that helped solve specific
architectural problems and offered standard ideas for better designs.

No one has a good formal definition of a “pattern” — somehow we recognize a
pattern when we see one. In fact, we humans are very good at pattern recognition.
We recognize a pattern as some recurring idea manifested in diverse situations. We
talk about organizational patterns and patterns of behavior, grammatical patterns,
musical patterns, speech patterns, and ornament patterns. Recognizing patterns helps
us structure our thoughts about a situation and draw on past experiences of similar
situations.

Experts, researchers, and volunteers have published some OO software design
patterns in books, magazine articles, and on the Internet. The first and most famous
book on the subject, Design Patterns, was published in 1995.*** Since then,
hundreds of patterns have been published, some rather general, others specialized for
particular types of applications. Apparently many people enjoy discovering and
publishing new design patterns. The great interest in design patterns is evident from
the numerous conferences, workshops, discussion groups, and web sites dedicated to
collecting and cataloguing patterns [1, 2].

* C. Alexander, The Timeless Way of Building. Oxford University Press, 1979.
** C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language. Oxford University Press, 1977.
*** The famous “Gang of Four” book. Design Patterns: Elements of Reusable Object-Oriented Software,
by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Addison-Wesley, 1995.

A more or less standard format for describing patterns has emerged. A typical
description includes the pattern name; a brief statement of its intent or the problem it

http://g.oswego.edu/dl/ca/
http://hillside.net/patterns/
http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/

 27.2 ~ FAÇADE 27-3

solves; a description of the pattern and the types of classes and objects involved;
perhaps a structural diagram; and an example, sometimes with sample code.

With too many patterns around, there is a danger that a novice may get lost. It is a
good idea to start with only a handful of the most commonly used patterns and to
understand exactly when and how they are used. Don’t feel inadequate if your initial
design doesn’t follow an “officially” named pattern. But if the design runs into a
problem, you can try to find a pattern that deals with that kind of problem, fix the
design, and follow the pattern in the future. Fortunately, unlike buildings, programs
are not set in concrete — it is often possible to change the design through minor
restructuring of classes while keeping most of the code intact. If you find a standard
pattern that fits your situation really well, it may bring you great satisfaction.

Being aware that OO design patterns exist helps you pay more attention
to the design stage of your project before rushing to write code.

In the following sections we briefly review and illustrate six common design
patterns: Façade, Strategy, Singleton, Decorator, Composite, and MVC (Model-
View-Controller).

27.2 Façade

When you design a complex software system, it is often split into subsystems, each
implemented in several classes. The Façade design pattern solves the problem of a
complicated interface to a subsystem, replacing complex interfaces to several classes
with one simpler interface to the whole subsystem. This is achieved by hiding the
functionality of the subsystem’s classes and their interactions in one “black-box”
class.

One example of Façade is our EasyReader class, described in Appendix E. If you
look at EasyReader’s code, you will see that this class hardly does any work — it
simply delegates its responsibilities to the library classes. For example:

27-4 CHAPTER 27 ~ DESIGN PATTERNS

 public EasyReader(String fileName)
 {
 ///
 try
 {
 inputFile = new BufferedReader(new FileReader(fileName), 1024);
 }
 catch (FileNotFoundException ex)
 {
 ...
 }
 }

 public String readLine()
 {
 String s = null;

 try
 {
 s = inputFile.readLine();
 }
 catch (IOException ex)
 {
 ...
 }
 ...
 }

A beginner does not necessarily want to deal with different types of Java I/O classes
or exceptions. EasyReader provides an adequate façade. In Java 5.0, Java
developers have created their own façade for their I/O classes, the Scanner class.
(EasyReader is still easier to use, because its constructor takes a pathname as a
parameter and does not throw exceptions, and because it has a readChar method.)

The Façade design pattern can also be used for encapsulating a process that involves
several steps. Suppose we are designing an application for storage and automatic
retrieval of scanned documents (such as parking tickets). A document has a number
printed on it, and we want to use OCR (Optical Character Recognition) to read that
number and use it as a key to the document. The OCR subsystem may include
several components and classes: ImageEditor, TextLocator, OCRReader, and so
on. For example:

 27.3 ~ STRATEGY 27-5

 ...
 Rectangle ocrArea = new Rectangle(200, 20, 120, 30);
 ImageEditor imageEditor = new ImageEditor();
 image = imageEditor.cut(image, ocrArea);
 TextLocator locator = new TextLocator();
 ocrArea = locator.findTextField(image);
 String charSet = "0123456789";
 OCRReader reader = new OCRReader(charSet);
 String result = reader.ocr(image, ocrArea);
 ...

A client of the OCR subsystem does not need to know all the detailed steps — all it
wants from the OCR subsystem is the result. The OCR subsystem should provide a
simple façade class, something like this:

public class OCR
{
 public static String read(Image image, Rectangle ocrArea)
 {
 ...
 }
}

Java library classes and interfaces involved in playing an audio clip from a .wav or
.au file include File, IOException, AudioFormat, AudioInputStream,
AudioSystem, DataLine, DataLine.Info, SourceDataLine, and
LineUnavailableException, Our EasySound class, described in Appendix E,
provides a façade for that, with one class, one constructor, and one method.

27.3 Strategy

The Strategy design pattern is simply common sense. If you expect that an object
may eventually use different strategies for accomplishing a task, make the strategy
module “pluggable” rather than hard-coded in the object. For example, in the design
of our Chomp project in Chapter 12 we made provisions for choosing different
strategies for the ComputerPlayer. If we need to support different levels of play or
different board sizes or even switch the strategy in the middle of a game, all we need
to do is pass a new Strategy parameter to ComputerPlayer’s setStrategy
method. To accomplish this separation, we defined an interface Strategy, so that
different strategy classes can implement it. For example:

public class Chomp4by7Strategy implements Strategy
{
 ...
}

27-6 CHAPTER 27 ~ DESIGN PATTERNS

We then can pass a particular type of Strategy object to the ComputerPlayer’s
setStrategy method. For example:

 ComputerPlayer computer = new ComputerPlayer(this, game, board);
 computer.setStrategy(new Chomp4by7Strategy());

We also used the Strategy design pattern in the GridWorld Dance project in
Chapter 11: a Dance was treated as a strategy for a Dancer, and the Dancer’s
learn(Dance d) method played the role of a “set strategy” method.

The Java Swing package follows the Strategy pattern for laying out components in a
container. Different strategies are implemented as different types of Layout objects.
A particular layout is chosen for a container by calling its setLayout method. For
example:

 JPanel panel = new JPanel();
 GridBagLayout gbLayout = new GridBagLayout();
 panel.setLayout(gbLayout);

27.4 Singleton

Suppose we want to have a “log” file in our program and we want to write messages
to it from methods in different classes. We can create a PrintWriter object log in
main. The problem is: How do we give all the other classes access to log? We only
ever need one log file open at a time, and it is tedious to pass references to this file in
various constructors and methods.

The first solution that comes to mind is to define a special LogFile class with a
static PrintWriter field embedded in it. LogFile’s methods are all static and
simply delegate their responsibilities to the corresponding PrintWriter methods.
For example:

 27.4 ~ SINGLETON 27-7

public class LogFile // Does not follow Singleton pattern
{
 private static PrintWriter myLog;

 private LogFile() // Can't instantiate this class
 {
 }

 public static void createLogFile(String fileName)
 {
 if (myLog == null)
 myLog = new PrintWriter(new FileWriter(pathName, false));
 }

 public static void println(String line)
 {
 if (myLog != null)
 myLog.println(line);
 }

 public static void closeLog()
 {
 if (myLog != null)
 myLog.close();
 }
}

Now main can call LogFile.createLogFile("log.txt"), and client classes
can call LogFile.println(msg).

This solution works, but it has two flaws. First, LogFile’s methods are limited to
those that we have specifically defined for it. We won’t be able to use all
PrintWriter’s methods unless we implement all of them in LogFile, too.
Second, LogFile is a class, not an object, and we have no access to the instance of
PrintWriter embedded in it. So we cannot do things with it that we usually do
with an object, such as pass it to constructors or methods, add it to collections, or
“decorate” it as explained in the next section.

The Singleton design pattern offers a better solution: rather than channeling method
calls to the PrintWriter instance in the LogFile class, make that instance
accessible to clients. Provide one static method in LogFile that initializes and
returns the PrintWriter field embedded in LogFile, but make sure that that field
is initialized only once and that the same reference is returned in all calls. For
example:

27-8 CHAPTER 27 ~ DESIGN PATTERNS

public class LogFile
{
 private static EasyWriter myLog;

 protected LogFile() // Can't instantiate this class
 {
 }

 public static PrintWriter getLogFile(String fileName)
 {
 if (myLog == null)
 myLog = new PrintWriter(new FileWriter(pathName, false));
 return myLog;
 }

 public static void closeLog()
 {
 if (myLog != null)
 myLog.close();
 }
}

Now any method can get hold of the log file and use all PrintWriter’s methods.
For example:

 PrintWriter log = LogFile.getLogFile("log.txt");
 log.print(lineNum);
 log.print(' ');
 log.println(msg);

This design is better, but not perfect. When the get... method takes an argument,
as above, it gives the impression that we can construct different objects (for example,
log files with different names). In fact, the parameter has an effect only when the
get... method is called for the first time. All the subsequent calls ignore the
parameter. We could provide an overloaded no-args version of get... and call it
after the log file is created.

In a slightly more sophisticated version, our LogFile class could keep track of the
file names passed to its getLogFile method and report an error if they disagree. Or
perhaps it could keep a set of all the different log files and return the file that matches
the name. But then it wouldn’t be a Singleton any more... Have we just discovered a
new design pattern?

 27.5 ~ DECORATOR 27-9

27.5 Decorator

Suppose you are designing a geometry package. You have started a little hierarchy
of classes for triangles:

public abstract class Triangle
{
 ...
 public abstract void draw(Graphics g);
}

public class RightTriangle extends Triangle
{
 ...
 public void draw(Graphics g)
 {
 g.drawLine(x, y, x + a, y);
 g.drawLine(x, y, x, y - b);
 g.drawLine(x+a, y, x, y - b);
 }
}

public class IsoscelesTriangle extends Triangle
{
 ...
 public void draw(Graphics g)
 {
 g.drawLine(x, y, x - c/2, y + h);
 g.drawLine(x, y, x + c/2, y + h);
 g.drawLine(x - c/2, y + h, x + c/2, y + h);
 }
}

So far, so good. Now you want to add the letters A, B, C to denote vertices in your
drawings. And sometimes to draw a median. Or a bisector. Or just a median but no
letters. Or three medians. This is beginning to look like a nightmare. What do you
do? Do you extend each of the classes to satisfy all these multiple demands? Like
this:

27-10 CHAPTER 27 ~ DESIGN PATTERNS

public class RightTriangleWithMedian extends RightTriangle
{
 ...
 public void draw(Graphics g)
 {
 super.draw(g);
 g.drawLine(x, y, x + a/2, y - b/2);
 }
}

public class IsoscelesTriangleWithMedian extends IsoscelesTriangle
{
 ...
 public void draw(Graphics g)
 {
 super.draw(g);
 g.drawLine(x, y, x, y + h);
 }
}

And so on. And what if you want to construct a triangle object and sometimes show
it with letters and sometimes without? Polymorphism won’t allow you to show the
same object in different ways.

The Decorator design pattern helps you solve these two problems: (1) the lack of
multiple inheritance in Java for adding the same functionality to classes on diverging
inheritance branches (such as adding letters to drawings of all kinds of triangles) and
(2) the difficulty of changing or extending the behavior of an individual object at run
time (such as drawing the same triangle object, sometimes with letters and other
times without), as opposed to changing or extending the behavior of the whole class
through inheritance.

The idea of the Decorator design pattern is to define a specialized “decorator” class
(also called a wrapper class) that modifies the behavior of or adds a feature to the
objects of the “decorated” class. Decorator uses real inheritance only for inheriting
the decorated object’s data type. At the same time, decorator uses a kind of do-it-
yourself “inheritance,” actually modeled through embedding. It has a field of the
decorated class type and redefines all the methods of the decorated class, delegating
them to that embedded field. The decorator adds code to methods where necessary.
The decorator’s constructor initializes the embedded field to an object to be
decorated.

 27.5 ~ DECORATOR 27-11

This is how the code might look in our Triangle example:

public class TriangleWithABC extends Triangle
{
 private Triangle myTriangle;

 public TriangleWithABC(Triangle t)
 {
 myTriangle = t;
 }

 public void draw(Graphics g)
 {
 myTriangle.draw(g);
 drawABC(g);
 }

 ...

 private drawABC(Graphics g)
 {
 ...
 }
}

A more formal decorator diagram is shown in Figure 27-1.

Triangle

IsoscelesTriangle RightTriangle

«Decorator»
TriangleWithABC

A B
has

A decorator
both extends
the base class
and has a field
of the base
class type.

extends

Figure 27-1. The Decorator design pattern

27-12 CHAPTER 27 ~ DESIGN PATTERNS

Now you can pass any type of triangle to your decorator. Polymorphism takes care
of the rest. For example:

 Triangle rightT = new RightTriangle(...);
 Triangle isosT = new IsoscelesTriangle(...);
 Triangle rightTwABC = new TriangleWithABC(rightT);
 Triangle isosTwABC = new TriangleWithABC(isosT);
 ...
 rightTwABC.draw(g);
 isosTwABC.draw(g);

Or, for short:

 Triangle rightTwABC =
 new TriangleWithABC(new RightTriangle(...));
 Triangle isosTwABC =
 new TriangleWithABC(new IsoscelesTriangle(...));
 rightTwABC.draw(g);
 isosTwABC.draw(g);

This solves the first problem — adding the same functionality to classes on diverging
inheritance branches.

You can also change the behavior of an object at run time by using its decorated
stand-ins when necessary. For example:

 Triangle rightT = new RightTriangle(...);
 Triangle rightTwABC = new TriangleWithABC(rightT);
 ...
 rightT.move(100, 50); // moves both rightT and rightTwABC
 ...
 rightT.draw(g); // draw without A,B,C
 ...
 rightTwABC.draw(g); // draw THE SAME triangle with A,B,C
 ...

Since a decorated triangle is still a Triangle, we can pass it to another decorator.
For example:

 Triangle rightT = new RightTriangle(...);
 Triangle rightTwABCwMedian =
 new TriangleWithMedian(new TriangleWithABC(rightT));

Exactly the same structure would work if the base type to be decorated
(for example, Triangle) were an interface, rather than a class.

One problem with decorators is that we need to redefine all the methods of the base
class (or define all the methods of the interface) in each decorator. This is repetitive

 27.5 ~ DECORATOR 27-13

and laborious. A better solution is to define a kind of abstract “decorator adapter”
class, a generic decorator for a particular type of objects, and then derive all
decorators from it. This structure is shown in Figure 27-2.

Triangle

IsoscelesTriangle RightTriangle

DecoratorY DecoratorX

DecoratedTriangle

Figure 27-2. The Decorator design pattern with the intermediate

abstract decorator class

The code may look as follows:

public abstract class DecoratedTriangle extends Triangle
{
 protected Triangle myTriangle;

 protected DecoratedTriangle(Triangle t)
 {
 myTriangle = t;
 }

 public void move(int x, int y)
 {
 myTriangle.move(x, y);
 }

 public void draw(Graphics g)
 {
 myTriangle.draw(g);
 }

 ... // redefine ALL other methods of Triangle
}

27-14 CHAPTER 27 ~ DESIGN PATTERNS

Now you can derive a specific decorator from DecoratedTriangle, redefining
only the necessary methods:

public class TriangleWithABC extends DecoratedTriangle
{
 public void TriangleWithABC(Triangle t)
 {
 super(t);
 }

 public void draw(Graphics g)
 {
 super.draw(g);
 drawABC(g);
 }

 private drawABC(Graphics g)
 {
 ...
 }
}

Decorators are a potential source of subtle bugs. An object of a
decorator class possesses the same fields as the decorated object
(because a wrapper class extends the wrapped class) but they are not
used and remain uninitialized. This may cause problems when a
wrapped object is passed to a method that expects an unwrapped object
and refers directly to its fields. That is why it’s a good idea not to refer
directly to fields of other objects passed to methods, even if they appear
to be objects of the same class. Before you decorate a class, make sure it
follows this convention.

Decorators must be used with caution: too many decorative layers make code
unreadable. The Java stream I/O package, for example, uses decorators extensively,
but the Java API documentation does not readily list wrapper classes for a given
class. As a result, we felt it was necessary to put a reasonable façade on it, with our
EasyReader and EasyWriter classes.

 27.6 ~ COMPOSITE 27-15

27.6 Composite

The Composite design pattern is a recursive pattern useful for nested structures. It
applies when we want a list or a set of things of a certain type to also be a thing of
that type.

Consider, for example the following two classes:

public class SimpleMessage implements Message
{
 private String message;

 public SimpleMessage()
 {
 message = "";
 }

 public SimpleMessage(String str)
 {
 message = str;
 }

 public void print()
 {
 System.out.print(message + " ");
 }
}

public class Text implements Message
{
 private List<Message> messages;

 public Text()
 {
 messages = new LinkedList<Message>();
 }

 public void add(Message msg)
 {
 messages.add(msg);
 }

 public void print()
 {
 for (Message msg : messages)
 msg.print(); // works polymorphically both for a Message
 // object and for a composite Text object
 }
}

27-16 CHAPTER 27 ~ DESIGN PATTERNS

Both implement the interface Message:

public interface Message
{
 void print();
}

A Text object both IS-A Message and HAS-A list of Messages:

«interface»
Message

SimpleMessage

private String message;

Text

private List<Message> messages;

Therefore, we can add Message objects to a Text object without worrying whether
they are simple “one-liners” or other “texts.” For example:

 Text fruits = new Text();
 fruits.add(new SimpleMessage("apples"));
 fruits.add(new SimpleMessage("and"));
 fruits.add(new SimpleMessage("bananas"));
 Text song = new Text();
 song.add(new SimpleMessage("I like to eat"));
 song.add(fruits);
 song.print();
 System.out.println();

The output will be

I like to eat apples and bananas

When we call print for a Text object, polymorphism makes sure that all the
Messages in its internal list are printed properly. In this example, Message could be
an abstract class rather than an interface.

The java.awt package uses the Composite pattern for handling GUI components: a
Container is a Component and we can also add Components to it. Polymorphism
makes sure that all components, both “simple” and “composite,” are correctly
displayed.

 27.7 ~ MVC (MODEL-VIEW-CONTROLLER) 27-17

27.7 MVC (Model-View-Controller)

Suppose you are designing a 3-D geometry package. You want to demonstrate
visually that the surface area of a sphere is proportional to its radius squared and that
the volume is proportional to the radius cubed. When the user enters a new radius,
your program displays a scaled picture of the sphere, the numbers for the surface area
and volume, and perhaps a bar chart that compares them. The user can also stretch
the model sphere with a mouse; the numbers change automatically (Figure 27-3).

Figure 27-3. Sphere model with text and mouse input

As you know, the first rule in a program of this kind is to isolate the model part
(representation of a sphere) and separate it from the GUI part (control and display
functions). In this example, we can discern several different “views” of the model:
the graphics view that shows a picture of the sphere, the text view that displays the
numbers for the surface area and volume, and perhaps other views. It is reasonable to
implement these different views as different classes.

There are also a couple of different “controllers”: one lets the user type in the radius
of the sphere, the other lets the user change the radius with the mouse. Again we
may want to implement them as different classes. The problem is how to structure
the interactions between all these classes. The MVC design pattern offers a flexible
solution.

27-18 CHAPTER 27 ~ DESIGN PATTERNS

MVC applies to situations where you have a “model” class that represents a system, a
situation, or a real-world or mathematical object. The model’s fields describe the
state of the model. The model class is isolated from the user interface, but there are
one or several “views” of the model that reflect its state. When the state changes, all
the views have to be updated.

You might be tempted to set up a “totalitarian system” in which one central controller
updates the model and manages all the views. In this approach, the model is not
aware that it is being watched and by whom. The controller changes the model by
calling its modifier methods, gets information about its state by calling its accessor
methods, and then passes this information to all the views (Figure 27-4). For
example:

// "Totalitarian system":

public class SphereController implements ActionListener
{
 private Sphere sphereModel;
 private TextView view1;
 private GraphicsView view2;
 ...

 public SphereController()
 {
 sphereModel = new Sphere(100);
 view1 = new TextView();
 view2 = new GraphicsView();
 ...
 }

 private void updateViews()
 {
 double r = sphereModel.getRadius();
 view1.update(r);
 view2.update(r);
 }

 public void actionPerformed(ActionEvent e)
 {
 String s = ((JTextField)e.getSource()).getText();
 double r = Double.parseDouble(s);
 sphereModel.setRadius(r); // update the model
 updateViews(); // update the views
 }
 ...
}

 27.7 ~ MVC (MODEL-VIEW-CONTROLLER) 27-19

This setup becomes problematic if requests to change the model come from many
different sources: GUI components, keyboard and mouse event listeners, timers, even
the model itself. All the different requests would have to go through the cumbersome
central bureaucracy.

Controller

Model View1

View2

View3

Figure 27-4. “Totalitarian” control of the model and the views

MVC offers a decentralized solution where the views are attached to the model itself.
The model knows when its state changes and updates all the views when necessary
(Figure 27-5). An MVC design can support several independent views and
controllers and makes it easy to add more views and controllers.

View1 View2 View3

Controller2 Controller1 Controller2

Model

Figure 27-5. The MVC design pattern

27-20 CHAPTER 27 ~ DESIGN PATTERNS

In our example, the MVC code with one controller might look like this:

public class SphereController implements ActionListener
{
 private Sphere sphereModel;
 private TextView view1;
 private GraphicsView view2;
 ...

 public SphereController()
 {
 sphereModel = new Sphere(100);
 sphereModel.addView(new TextView());
 sphereModel.addView(new GraphicsView());
 ...
 }

 public void actionPerformed(ActionEvent e)
 {
 String s = ((JTextField)e.getSource()).getText();
 double r = Double.parseDouble(s);
 sphereModel.setRadius(r);
 }
 ...
}

public class Sphere
{
 ...
 public setRadius(double r)
 {
 myRadius = r;
 updateAllViews();
 }
 ...
}

The model keeps all the views attached to it in a set or list.

� � �

The Java library supports the MVC design pattern by providing the Observable
class and the Observer interface in its java.util package. If your “model” class
extends Observable, it inherits a reference to an initially empty list of observers
and the addObserver method for adding an observer to the list. Your class also
inherits the setChanged method for raising the “model changed” flag and the
notifyObservers method for notifying all the registered observers.

 27.7 ~ MVC (MODEL-VIEW-CONTROLLER) 27-21

Each view registered with the model must implement the Observer interface and
provide its one required public method:

 void update(Observable model, Object arg);

The first parameter is the observed model; the second parameter is any object passed
from the model to the view.

Figure 27-6 shows how it all might look in our example.

public class SphereController implements ActionListener
{
 private Sphere sphereModel;
 ...

 public SphereController()
 {
 sphereModel = new Sphere(100);
 sphereModel.addObserver(new TextView());
 sphereModel.addObserver(new GraphicsView());
 ...
 }

 public void actionPerformed(ActionEvent e)
 {
 String s = ((JTextField)e.getSource()).getText();
 double r = Double.parseDouble(s);
 sphereModel.setRadius(r);
 }
 ...
}

public class TextView
 implements java.util.Observer
{
 ...
 public void update(Observable model, Object arg)
 {
 Sphere sphere = (Sphere)model;
 ...
 }
}

Figure 27-6 continued ®

27-22 CHAPTER 27 ~ DESIGN PATTERNS

public class GraphicsView
 implements java.util.Observer
{
 ...
 public void update(Observable model, Object arg)
 {
 Sphere sphere = (Sphere)model;
 ...
 }
}

class Sphere extends java.util.Observable
{
 ...
 public void setRadius(double r)
 {
 myRadius = r;
 setChanged(); // Indicates that the model has changed
 notifyObservers(); // Or: notifyObservers(someObjectParameter)
 }
 ...
}

Figure 27-6. A sketch for the Sphere classes with Observer/Observable

The notifyObservers method in the model class calls update for each registered
observer. If notifyObservers is called with some object as a parameter, that
parameter is passed to update (as its second argument); if the model calls the
overloaded no-args version of notifyObservers, then the parameter passed to
update is null.

The complete code for our MVC sphere example with two controllers and two views
is included in JM\Ch27\MVC\source.zip.

� � �

In our case studies and labs we tried to follow the MVC design pattern where
possible. For example, our Craps and Chomp designs follow the MVC pattern. We
did not use Observer-Observable there because the model had only one view and
it was easier to handle it directly. A more detailed treatment of MVC and a coding
example with multiple controllers and views can be found on AP Central [1].

Java’s Swing follows MVC in implementing GUI components. For example, the
JButton class is actually a façade for the DefaultButtonModel (model),
BasicButtonUI (view), and ButtonUIListener (controller) classes. This design

http://apcentral.collegeboard.com/apc/members/courses/teachers_corner/185168.html

 27.8 ~ SUMMARY 27-23

makes it possible to implement “pluggable look and feel” by changing only the
views.

MVC can be applied to more than just visual display: a “view” class can play sounds,
update files, and so on.

The MVC design pattern is not universal. While it is always a good idea to isolate
the “model” from the user interface, the “view” and “controller” may sometimes be
intertwined too closely for separation. When you are filling out a form on the screen,
for example, the viewing and controlling functions go together. There is no need to
stretch a design pattern to fit a situation where it really does not apply.

27.8 Summary

We have described half a dozen design patterns to give you an idea of what design
patterns are about and to help you get started. Many more patterns have been
published. Being generally aware of their existence brings the issue of sound OO
design into focus. Following specific design patterns helps beginners avoid common
mistakes. An OOP designer should gradually become familiar with the more famous
patterns and learn how and when to apply them.

The Façade design pattern is used to shield clients from the complexities of a
subsystem of classes by providing a simplified interface to them in one “façade”
class. A façade may serve as a “black box” for a process or a function.

The Strategy design pattern deals with attaching strategies (algorithms, solutions,
decisions) to objects. If you want your design to be flexible, isolate each strategy in
its own class. Have a higher-level class or main choose a strategy and attach it to a
client. Do not allow a client to create its own strategy, because that will make it
harder to change the client’s strategy.

The Singleton design pattern deals with situations where you need to have only one
object of a certain class in your program and you want to make that object readily
available in different classes. A “Singleton” class embeds that object as a static field
and provides a static accessor to it. The accessor initializes the object on the first call
but not on subsequent calls.

The Decorator design pattern solves the problem of adding the same functionality to
classes on diverging inheritance branches without duplication of code. It also offers
an elegant solution for modifying an object’s behavior at run time. A decorator both
extends the base class and embeds an instance of the base class as a field. The
decorator’s methods delegate their responsibilities to the embedded field’s methods

27-24 CHAPTER 27 ~ DESIGN PATTERNS

but can also enhance them. A decorator provides a constructor that takes an object of
the base class (or any class derived from it) as an argument. That is why decorator
classes are also called wrapper classes.

The Composite design pattern is used for implementing nested structures. A
“composite” is a class that both inherits from a base class and contains a set or a list
of objects of the base class type. This way a composite can hold both basic objects
and other composites, nested to any level.

The MVC design pattern offers a flexible way to arrange interactions between a
“model” object, one or more “controller” objects, and one or more “view” objects.
The views are attached to the model, which updates all the views when its state
changes. Java supports MVC design by providing the Observable class and the
Observer interface in its java.util package. The “model” class extends
Observable, which provides methods to add an observer to the model and to notify
all observers when the model needs to update them. A view class implements the
Observer interface and must provide the update method, which is called when
observers are notified.

Design patterns offer general ideas but should not be followed slavishly. Don’t try to
stretch a pattern to fit a situation where it does not apply.

� � �

OO design patterns and tools represent a bold attempt to turn the art of software
design into something more precise, scientific, and teachable. But behind all the
technical terms and fancy diagrams, some art remains an essential ingredient. As we
said in the introduction, software structures are largely hidden from the world. Still,
something — not only the need to finish a project on time — compels a designer to
look for what Christopher Alexander called “the quality without a name”: order,
balance, economy, fit to the purpose, and, in Alexander’s words, “a subtle kind of
freedom from inner contradictions.” Let us join this search — welcome, and good
luck!

	 Exercises 	

The exercises for this chapter are in the book (Java Methods: Object-Oriented
Programming and Data Structures, 2nd AP Edition, ISBN 978-0-9824775-7-1,
Skylight Publishing, 2011 [1]).

http://www.skylit.com/

	Design Patterns
	27.1 Prologue
	27.2 Façade
	27.3 Strategy
	27.4 Singleton
	27.5 Decorator
	27.6 Composite
	27.7 MVC (Model-View-Controller)
	27.8 Summary

