

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

The Model-View-Controller Design Pattern

By Maria Litvin and Gary Litvin

Introduction

In OOP, much of the emphasis shifts from software development to software design. Object-
oriented design (OOD) is not easy — designing a software application often takes more time than
coding it, and design errors usually take longer to correct than errors in the code. Design patterns
represent a bold attempt by experienced software designers to formalize their skill and share it
with novices. Of course, each software application is unique and its design is unique, but
familiarity with design patterns can help you solve common design problems and avoid common
mistakes.

No one has come up with a good formal definition of a “pattern” — but somehow, most people
recognize a pattern when they see one. In fact, we humans are very good at pattern recognition.
We recognize as a pattern any structure, idea, or behavior that recurs in diverse situations. We
talk about organizational patterns and patterns of behavior, grammatical patterns, musical
patterns, speech patterns, and ornament patterns. Recognizing patterns helps us structure our
thoughts about a situation and draw on past experiences of similar situations. The word pattern
therefore has a second meaning as well: an example worthy of imitation.

The idea of design patterns in OOP can be traced to the influential writer on architecture,
Christopher Alexander [1]. In his books, The Timeless Way of Building [2] and A Pattern
Language [3], Alexander introduced design patterns as a way to bring some order into the chaotic
universe of arbitrary architectural design decisions: how rooms should be connected, where
windows should be placed, etc. In A Pattern Language, Alexander and his co-authors catalogued
253 patterns that helped solve specific architectural problems and offered standard ideas for better
designs.

The first and most famous book on the subject of software design patterns, Design Patterns, by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, was published in 1995 [4]. It
is known as the “gang of four” book. Since then, hundreds of patterns have been published, some
rather general, others specialized for particular types of applications. Both academia and the
software industry have taken a great interest in design patterns. This interest is evident from the
numerous conferences, workshops, discussion groups, and web sites dedicated to collecting and
cataloguing patterns [5, 6].

A more or less standard format for describing patterns has emerged. A typical description
includes the pattern name; a brief statement of its intent or the problem it solves; a brief
description of the pattern and the types of classes and objects involved; perhaps a structural
diagram; and an example, sometimes with sample code. Such descriptions are often quite
technical and terse. In this paper we present a less formal description of MVC along with a
complete program example that illustrates its use.

 1

http://hillside.net/patterns/
http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

The Main Principles of OOD

Object-oriented design has two main objectives: to make the classes cohesive and to reduce
coupling. Cohesion means that each class of objects defines a small set of behaviors and
responsibilities unified by a common purpose. Apples belong with apples, and oranges with
oranges — a fruit basket of a class is not a good idea. Coupling refers to the degree of
interdependency between classes: the less each class needs to “know” about the other classes, the
better.

These two objectives are somewhat in tension. To accomplish anything useful, cohesive classes
need to work together. An OO designer is thus constantly striving to find a balance, to come up
with a set of cohesive classes with relatively low coupling but capable of working together.

One corollary of the cohesion principle is the separation of the user interface from the
computational model. This is desirable for many reasons. In particular:

 In defining how an abstract model should work, it is easier simply to assume that it gets
some inputs and gives some outputs without considering precisely how this happens;

 In many programs, the user interface will need to be updated or customized more often
than the underlying model;

 Developing GUI (graphical user interface) requires a different set of programming skills
than those needed for developing data structures and algorithms.

Separating GUI from the computational model poses a number of questions, however. How does
GUI interact with the model? Who is in charge? The Model-View-Controller (or MVC for short)
design pattern helps address these questions.

MVC

MVC typically applies to software applications in which the user interacts with the program in
real time. Every software application models some situation or process. In OOP, a model is
described by a class or a system of related classes. For example, a chess game can be modeled by
a list of moves; a moving car can be modeled by a set of variables (position, velocity,
acceleration) and the equations that connect them; a document in a word processor can be
modeled by a list of its components, including text boxes, pictures, and embedded formatting
tags. According to our separation principle, the model should be abstract, divorced from any
GUI.

The state of the model is described by the current values of its internal variables (data fields).
Suppose the model provides modifier methods that can change those values, so the state of the
model can change in response to “outside” stimuli. In the MVC design, objects that cause the
model to change are called controllers. For example, in a computer chess program, one object
may represent a human player and another a computer player. Both act as controllers: either can
change the model (the chess game) by making a move. A moving car can be controlled by an
object that represents the gas pedal and also by a clock that periodically moves the car. A
document in a word processor can be changed by the buttons on the toolbars and menus and by

 2

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

input from the keyboard and mouse. In a GUI application, the controllers can act independently
of each other and do not have to be synchronized in any way.

All of the above is quite straightforward and familiar. Interesting things begin to happen when
you need to monitor the changes in the model, especially if you need to have several different
“views” of the model. In a chess game, for example, you might want to see the current board
position and/or a list of the moves that led to it; for a moving car, you might want to see a picture
of a car moving on the road or the car’s speedometer gauge, or both at once; in a word processor
you might want to switch between “normal,” “page layout,” and “outline” views.

The central question that MVC addresses is: How do the views get updated? You might be
tempted to set up a “totalitarian system” in which one central controller updates the model and
manages all the views (Figure 1). In this approach, the model is not aware that it is being
watched and by whom. The controller changes the model by calling its modifier methods, gets
information about its state by calling its accessor methods, and then passes this information to all
the views.

Controller

Model View1

View2

View3

Figure 1. “Totalitarian” control of the model and the views

This setup becomes problematic if requests to change the model come from many different
sources (GUI components, keyboard and mouse event listeners, timers, etc.), so that it is not
practical to combine all of them in one class. All the different requests would have to go through
the cumbersome central bureaucracy. If you split the control mechanism into several classes, you
will end up with an “oligarchy,” in which every controller updates every view (Figure 2). Forget
about low coupling.

 3

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

View1 View2 View3

Controller1 Controller2 Model

Figure 2. An “oligarchy”: each controller can update the model and all the views

An MVC design offers a decentralized solution in which the views are attached to the model
itself. The model knows when its state changes and updates the views when necessary (Figure 3).
Such design can support several independent views and controllers and makes it easy to add more
views and controllers.

View1 View2 View3

Controller2 Controller1 Controller2

Model

Figure 3. MVC design: different views are attached to the model

The term “view” implies a visible GUI component that provides a visual representation of the
model, but it doesn’t have to be. Any object that monitors the changes in the model — a file that
keeps a log of the changes, a sound player that plays a particular audio clip at the appropriate
moment, even some other model — can qualify as a “view.”

Observer-Observable

The Java library supports the “MV” part of the MVC design pattern through the Observable
class and the Observer interface. Both belong to the java.util package. (We are used to
interface names that sound like adjectives that end with “-able,” and class names that sound like
nouns. Here it is the reverse.) Observable and Observer work together. The class that
represents the model extends Observable; the class that represents a view implements

 4

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

Observer. Thus the model becomes Observable and a view becomes an Observer. An
Observable object maintains a list of its observers.

Let’s look at the Observer interface first. It specifies only one method:

void update(Observable model, object arg);

update is called for each observer in the model’s list of observers when the model wants to
update its observers. (This mechanism is hidden in Observable’s notifyObservers method).
update receives a reference to the model as the first parameter. update’s code often casts that
parameter back into the specific model type to be able to call its accessor methods. For example:

import java.util.Observable;
import java.util.Observer;
...

// Represents a roadside display of a motorist's speed.
public class RoadsideDisplay extends JPanel
 implements Observer
{
 private JLabel speedDisplay;

 public RoadsideDisplay()
 {
 // Set up GUI:
 ...
 }

 public void update(Observable model, Object arg)
 {
 Car car = (Car)model;
 double speed = car.getSpeed();
 speedDisplay.setText(String.format("%5d ", speed));
 }
}

update’s second parameter (argument) arg is an optional parameter that can be passed to
update by the model to convey some additional information. If the model does not provide it,
then it is set to null.

Note that when a view is a Swing component that overrides the paintComponent method,
update cannot call paintComponent directly. It has to save a reference to the model in a
private field, then call repaint. For example:

 5

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

import java.util.Observer;
import java.util.Observable;
...

// This class represents a speedometer gauge on the screen.
public class Speedometer extends JPanel
 implements Observer
{
 private Car car;

 ...

 public void update(Observable model, Object arg)
 {
 car = (Car)model;
 repaint();
 }

 public void paintComponent(Graphics g)
 {
 super.paintComponent(g);

 if (car == null)
 return; // to avoid the NullPointerException when paintComponent
 // is called before update
 double speed = car.getSpeed();
 ... etc.
 }
 ...
}

Now let’s take a look at Observable. An Observable object (the model) maintains a list of all
observers attached to it and provides methods for adding an observer and for notifying all its
observers that they need to be updated. A programmer typically uses the following three methods
of the Observable class:

public void addObserver(Observer view) // Adds view to the list of observers

public void setChanged() // Sets the changed flag to true

public void notifyObservers() // or notifyObservers(arg);
 // If the changed flag is set, calls
 // update for each observer

addObserver can be called from main or another method that creates the observer. For
example:

 Car car = new Car();
 ...
 RoadsideDisplay roadsideDisplay = new RoadsideDisplay();
 car.addObserver(roadsideDisplay);
 Speedometer speedometer = new Speedometer();
 car.addObserver(speedometer);
 ...

The setChanged method is called by the model itself; it simply sets the changed flag to true.
setChanged is usually followed by a call to notifyObservers. For example:

 6

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

// Represents a model for a vehicle moving along a straight line.
public class Car extends java.util.Observable
{
 ...

 // Moves this car for the time increment dt.
 public void move(double dt)
 {
 ...
 position += speed * dt;
 ...

 setChanged();
 notifyObservers();
 }
}

notifyObservers checks whether the changed flag is set, and, if so, calls the update method
for each observer in the observers list. It then resets the changed flag to false.
notifyObservers(), the no-args version, passes this to the update method as the first
parameter and null as the second parameter. The overloaded version of notifyObservers
that takes one parameter, Object arg, passes arg as the second parameter to the update
method. The Observer-Observable mechanism has one limitation: it does not allow the model to
update its observers selectively — it’s either all or none. The model can use the arg parameter
(for example, an enum value or a string) to instruct some of the observers to take a specific action
or to ignore the update call altogether.

MVC in Action: An Example

Our example is indeed a toy car ride simulator. We chose this example for several reasons:

 The situation is familiar to everyone;

 The model is simple but not trivial;

 The allegory of views and controllers is obvious;

 The situation naturally calls for several different kinds of controllers and views;

 All the classes are short and cohesive;

 The MVC design is an obvious choice, and in fact it would be hard to design this
application without it.

Figure 4 shows a snapshot of the program screen. It shows five windows: a speedometer gauge, a
gas pedal, a brake pedal, a roadside speed display, and a picture of a road with a car on it. When
the user presses the gas or brake pedal, the car accelerates or slows down accordingly, and its
speed is displayed on the speedometer and the roadside display. We have put each component
into a separate window to underscore their independence from each other.

In this example we have a model, three controllers, and four views. The model represents the
position, speed, and acceleration of a car moving along a straight line, with the given levels of gas
or brakes applied. The gas and brake “pedals” serve as controllers. The third controller is
invisible: it is the timer that moves the car, creating the animation effect. The three views visible

 7

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

in Figure 4 are the speedometer gauge, the roadside speed display, and the “road” with the
moving car picture on it.

Figure 4. The windows from the MVCDemo program

We mentioned earlier that a “view” does not have to be visible. To demonstrate this (and just for
fun) we have added a fourth “view” class to this program: TiresSqueal. It plays a sound like
squealing tires when the car brakes too fast. Like the other view classes, TiresSqueal
implements Observer.

A Car object has the modifier methods applyGas, applyBrakes and move, which are called by
the respective controllers. It is the model that decides when to notify the views about a change.
Here only the car’s move method notifies the views; the applyGas and applyBrakes methods
do not.

Figure 5 shows a class diagram for this program. The class Car, the model, extends
Observable. The view classes, Speedometer, RoadsideDisplay, Road, and
TiresSqueal, implement Observer. (Library classes and interfaces are usually not included in
such diagrams, but we have included Observable and Observer to show where they fit in.)
The BrakePedal and GasPedal classes are derived from an abstract class Pedal, derived from
JSlider, modified to release the pedal when the mouse button is released. The Clock class has
a timer that fires every 50 milliseconds; it calls the car’s move method each time it fires.
MVCDemo’s main method creates the model and all the views and controllers.

 8

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

Car

«interface»
java.util.Observer

Road Speedometer

MVCDemo

RoadsideDisplay

EasySound

Clock

Pedal

TiresSqueal

BrakePedal GasPedal

java.utilObservable

A B
extends

depends on

has

implements

Car
BrakePedal
GasPedal
Speedometer
RoadsideDisplay
Road
TiresSqeal

Figure 5. A class diagram for the MVCDemo program

In this design, the classes know very little about each other. Even the Car class is not aware of
the particular types of observers attached to it: Car interacts with its observers via the Observer
interface. A diagram like this, without lines crisscrossing each other, indicates that the coupling
in our design is minimal. The MVCDemo class is aware, of course, of all the classes in the project,
(except EasySound), because its main method creates the model and all the views and
controllers. The classes are cohesive, with well-defined limited responsibilities. We could have
put the timer inside the Car class, for example, but that would violate the cohesiveness principle.

Note how flexible this design is. To integrate TiresSqueal into the program, for example, all
we had to do was write that class and add one line to MVCDemo’s main:

 9

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 car.addObserver(new TiresSqueal());

All the other classes remained intact. (TiresSqueal uses our EasySound class to load the
sound clip and play the sound.)

The complete source code for this program and a runnable jar file are available at
http://www.skylit.com/oop/index.html.

References:

[1] Christopher Alexander: An Introduction for Object-Oriented Designers by Doug Lea,

http://g.oswego.edu/dl/ca/.

[2] C. Alexander, The Timeless Way of Building. Oxford University Press, 1979.

[3] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language. Oxford University

Press, 1977.

[4] Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides. Addison-Wesley, 1995.

[5] http://hillside.net/patterns/

[6] http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/

 10

http://www.skylit.com/javamethods/JM-Appendix-E.html
http://www.skylit.com/oop/index.html
http://g.oswego.edu/dl/ca/
http://hillside.net/patterns/
http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/

	The Model-View-Controller Design Pattern

