
SIGCSE 2008

Maria Litvin
Phillips Academy
Andover, Massachusetts
mlitvin@andover.edu

AND

Combining
Discrete Mathematics

Python Programming

Copyright © 2008 by Maria Litvin

1

Slide 2

Math and computer science should
help each other:
• A programmer needs to be comfortable with

abstractions, and that is precisely what math
teaches.

• Computer science reciprocates by providing
models and hands-on exercises that help
clarify and illustrate more abstract math.

• Most importantly, both teach “precision
thinking” — an important means of solving
problems that call for exact solutions.

Slide 3

Why Python?

• Easy to install and get started with; has a
simple built-in editor

• Has a convenient subset for novices
• Has straightforward syntax
• Provides easy console I/O and file handling
• Has simple but powerful features for working

with strings, lists, “dictionaries” (maps), etc.
• Free

Slide 4

Lab 1: Sums and Iterations (from Ch 4)

(1)1 2 ...
2

n nn +
+ + + =

times

1 2 ...

(1) ... 1

2 (1) (1) ... (1)

(1)2 (1)
2

n

s n

s n n

s n n n

n ns n n s

= + + +

= + − + +

= + + + + + +

+
= + ⇒ =

Proof:

+ + +++

Slide 5

def sum1ToN(n):
"Calculates 1+2+...+n using a formula"
return n*(n+1)/2

n = -1
while n <= 0:

s = raw_input("Enter a positive integer: ")
try:

n = int(s)
except ValueError:

print "Invalid input"

print 'n =', n
print '1+2+...+n =', sum1ToN(n)

Slide 6

def sum1ToN(n):
"Calculates 1+2+...+n using a formula"
return n*(n+1)/2

n = -1
while n <= 0:

s = raw_input("Enter a positive integer: ")
try:

n = int(s)
except ValueError:

print "Invalid input"

print 'n =', n
print '1+2+...+n =', sum1ToN(n)

Optional “documentation string”

Define a
function

Read a line from input

Single or double
quotes can be used in

literal strings

Slide 7

Lab 1 (cont’d)

• Run IDLE (Python’s GUI shell).
• Open a new editor window (File/New

Window or Ctrl-N).
• Type in the program from Slide 6.
• Save the file (File/Save or Ctrl-S) as, say,

Lab1.py in a folder (for example, in
C:\sigcse2008-17).

• Run the program (Run/Run Module or F5).

2

Slide 8

Slide 9

Lab 1 (cont’d)

Now let’s pretend that we do not know
the formula for 1 + 2 + ... + n and
calculate this sum using iterations.

Add the code from the next slide at the
end of the same Python source file.

Slide 10

...

def sum1ToN(n):
"Computes 1+2+...+n using iterations"
s = 0
k = 1
while k <= n:

s += k # Short for s = s + k
k += 1

return s

print '1+2+...+n =', sum1ToN(n)

Slide 11

...

def sum1ToN(n):
"Computes 1+2+...+n using iterations"
s = 0
k = 1
while k <= n:

s += k # Short for s = s + k
k += 1

return s

print '1+2+...+n =', sum1ToN(n)

Overrides the
earlier definition

The global variable n is
defined earlier (see Slide 6)

Slide 12

Slide 13

Lab 1 (cont’d)

Once you have run a program, its
functions and global variables become
“imported,” and you can work with them
interactively in Python shell. For example:

>>> n
5
>>> sum1ToN(5)
15
>>> sum1ToN(100)
5050

3

Slide 14

Exercise
Write a program that prompts the user to
enter a positive integer n and displays the
table

1: 1 1
2: 3 9

...
n: s1(n) s3(n)

where
s1(n) = 1+2+...+n
s3(n) = 13+23+...+n3

Guess the formula for s3(n).
See hints on the next slide.

Slide 15

Hints

• print "%3d: %3d %5d" % (k, s1, s3)
prints k, s1, and s3 aligned in columns (the
supported formats are similar to printf in
C++, Java).

• Your program will be more efficient if you
use only one while loop and update the
values of s1, s3 on each iteration, instead of
recalculating them each time from scratch.
So do not use function calls.

Slide 16

Exercise “Extra Credit”

Change your program to also display
s2(k) and 3·s2(k) / s1(k), where

s2(n) = 12+22+...+n2

Guess the formula for s2(n).

Slide 17

Lab 2: The Fundamental Theorem
of Arithmetic (from Ch 15)

The fundamental theorem of arithmetic
states that any positive integer can be
represented as a product of primes
and that such a representation is
unique (up to the order of the factors).
For example:

90 = 2·3·3·5

The proof requires some work – it is
not trivial.

Slide 18

Exercise
Write a program that prompts the user to
enter a positive integer n and displays its
prime factors separated by *. For
example:

See hints on the next two slides.

Enter a positive integer: 90
90 = 2 * 3 * 3 * 5

Slide 19

Hints

• No need to look for primes – just take the
smallest divisor d of n (d > 1), print it out,
then divide n by d, and continue.

• The if statement
if n % d == 0:

...
else:

...
checks whether d divides n.

4

Slide 20

Hints (cont’d)

• One way to display asterisks correctly
between the factors:

separator = '='
while ...:

if ...:
print separator, d,
separator = '*'

This comma prevents
newline -- the output
will go to the same line

Slide 21

Exercise “Extra Credit”

Write and test a function that takes a
positive integer and returns a string of its
binary digits. For example, binDigits(23)
should return '10111'.

Hints:
• str(d) converts a number d into a string
• Python’s integer division operator is //

(it truncates the result to an integer)
• s1 + s2 concatenates strings s1 and s2

Slide 22

(read “n choose k”) represents the

number of ways in which we can choose k
different objects out of n (where the order of
the selected objects does not matter). For
example, there are 108,043,253,365,600
ways to choose 23 workshop participants
out of 50 applicants.

Lab 3: Polynomials and Binomial
Coefficients (from Ch 11)

n
k
⎛ ⎞
⎜ ⎟
⎝ ⎠

Slide 23

Lab 3 (cont’d)
!

!()!
n n
k k n k
⎛ ⎞ =⎜ ⎟ −⎝ ⎠Proof:

Our selection method is to arrange n objects in a
line, then take the first k of them.

k objects;
k! permutations

n-k objects;
(n-k)!

permutations

n objects;
n! permutations

Slide 24

Lab 3 (cont’d)
Factorials can get pretty big quickly, but
Python automatically switches to large
integers. For example:

>>> factorial(100)
93326215443944152681699
23885626670049071596826
43816214685929638952175
99993229915608941463976
15651828625369792082722
37582511852109168640000
00000000000000000000L
>>>

def factorial(n):
f = 1
k = 2
while k <= n:

f *= k
k +=1

return f

Slide 25

Lab 3 (cont’d)
Still, it is more efficient to avoid huge
numbers. We can calculate n-choose-k
using the following property:

1
1

n n n k
k k k

− +⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

def nChooseK(n, k): # recursive version
if k == 0:

return 1
else:

return nChooseK(n, k-1) * (n - k + 1) / k

5

Slide 26

Lab 3 (cont’d)
The n-choose-k numbers are also known
as binomial coefficients because

1(1) ...
0 1 1

n n nn n n n
x x x x

n n
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

So we can compute n-choose-k by
multiplying polynomials (and in the
process get a feel for handling lists in
Python).

Slide 27

Lists in Python

lst1 = [2, 3, 5, 7, 11]
len(lst1) # 5
i = 3
lst1 [i] # 7
lst2 = lst1[1:3] # a “slice” of lst1: [3, 5]
lst1a = lst1[:] # a copy of lst1
lst0 = [] # an empty list
lst3 = 3*lst2 # [3, 5, 3, 5, 3, 5]
lst1.append(13) # [2, 3, 5, 7, 11, 13]
lst4 = lst1 + [17, 19] # [2, 3, 5, 7, 11, 13, 17, 19]
lst5 = 5*[0] # [0, 0, 0, 0, 0]

Slide 28

Let’s represent a polynomial

as a list of its coefficients

[an, ..., a1, a0]

The function multiply(p1, p2) returns the
product of two polynomials (represented
as a list).

Lab 3 (cont’d)

1 0...n
na x a x a+ + +

Slide 29

Lab 3 (cont’d)

def multiply(p1, p2):
n = len(p1) + len(p2) - 1
result = n*[0]

i = 0
while i < len(p1):

j = 0
while j < len(p2):

result [i+j] += p1[i] * p2[j]
j += 1

i += 1

return result

Length of the
resulting list

Creates a list of
length n filled

with zeros

Indices start
from 0, as

usual

Slide 30

Exercise

Write a program that prompts the user for
a positive integer n and prints a Pascal’s
triangle with n rows:

See hints on the next slide.

0: [1]
1: [1, 1]
2: [1, 2, 1]
3: [1, 3, 3, 1]
4: [1, 4, 6, 4, 1]

Slide 31

Hints

• The above code for the multiply function is available
in Polynomials.py. Cut and paste or copy this file to
your work folder and add

from polynomials import multiply

to your program.

• The polynomial x+1 is represented as [1, 1]

• Use print str(k) + ':' to print k followed by a colon

• Use print lst to print the list lst

6

Slide 32

Exercise “Extra Credit”

Add to the output for each row the sum
of all the elements in that row and the
sum of their squares. Show that

2 2 2 2
...

0 1
n n n n

n n
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Proof: compare the middle coefficients
in (x+1)2n and (x+1)n·(x+1)n

See programming hints on the next
slide.

Slide 33

Hints

• The built-in function sum(lst) returns the sum
of the elements of lst.

• Python has a neat feature called “list
comprehensions.” For example, to obtain a
list lst2 of squares of the elements of lst you
can use a “list comprehension”

lst2 = [x*x for x in lst]

Slide 34

Lab 4: Probability of Matching
Birthdays (from Ch 12)

What is the probability p(k) that
in a group of k people at least
two have the same birthday?

() 1 ()p k q k= − where q(k) is the
probability that all the
birthdays are different

365 364 ... (365 1)()
365k

kq k ⋅ ⋅ ⋅ − +
=

Slide 35

Exercise

Write a program that prints a table of
pairs k, p(k) for k from 1 to 50. Find
the smallest k such that p(k) > 0.5.

Slide 36

Hints

• The program is just a few lines of code
because

365(1) ()
365

kq k q k −
+ =

• Be careful with division. Work with floating
point numbers (e.g., 365.0, not 365) to avoid
truncation in integer division or put

from __future__ import division
at the top of your program.

Slide 37

Back to the Big Picture...

• Math-in-CS debates notwithstanding, knowing
relevant math makes better CS students and
professionals.

• Start in middle school.

• “Problem solving” means solving problems, not just
applying familiar skills in familiar ways.

• Proofs are not just boring exercises in geometry.

• Math+CS blend can bring new kinds of recruits to
CS: young people who like math but have not
considered CS.

