SIGCSE 2008

Combining
 Discrete Mathematics
 Python Programming

Maria Litvin
Phillips Academy
Andover, Massachusetts mlitvin@andover.edu

Math and computer science should help each other:

- A programmer needs to be comfortable with abstractions, and that is precisely what math teaches.
- Computer science reciprocates by providing models and hands-on exercises that help clarify and illustrate more abstract math.
- Most importantly, both teach "precision thinking" - an important means of solving problems that call for exact solutions.

Why Python?

- Easy to install and get started with; has a simple built-in editor
- Has a convenient subset for novices
- Has straightforward syntax
- Provides easy console I/O and file handling
- Has simple but powerful features for working with strings, lists, "dictionaries" (maps), etc.
- Free

Lab 1: Sums and Iterations (from Ch 4)

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

Proof:

$$
\begin{aligned}
& 2 s=n(n+1) \Rightarrow s=\frac{n(n+1)}{2}
\end{aligned}
$$

Lab 1 (cont'd)

Once you have run a program, its functions and global variables become "imported," and you can work with them interactively in Python shell. For example:

```
>>> n
5
>>> sum1ToN(5)
15
>>> sum1ToN(100)
5050
```


Lab 3: Polynomials and Binomial Coefficients (from Ch 11)
$\binom{n}{k}$ (read "n choose k") represents the number of ways in which we can choose k different objects out of n (where the order of the selected objects does not matter). For example, there are $108,043,253,365,600$ ways to choose 23 workshop participants out of 50 applicants.

Lab 3 (cont'd)

The n-choose-k numbers are also known as binomial coefficients because
$(x+1)^{n}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1}+\ldots+\binom{n}{n-1} x+\binom{n}{n}$
So we can compute n-choose-k by multiplying polynomials (and in the process get a feel for handling lists in Python).

Lists in Python

```
Ist1 = [2, 3, 5, 7, 11]
len(Ist1) #5
i=3
Ist1 [i]
Ist2 = Ist1[1:3] # a "slice" of Ist1: [3, 5]
Ist1a = Ist1[:] # a copy of Ist1
Ist0 = [ ] # an empty list
Ist3 = 3*lst2 # [3, 5, 3, 5, 3, 5]
Ist1.append(13) # [2, 3, 5, 7, 11, 13]
Ist4 = Ist1 + [17, 19] # [2, 3, 5, 7, 11, 13, 17, 19]
Ist5 = 5*[0] # [0, 0, 0, 0, 0]
```


Lab 3 (cont'd)

Let's represent a polynomial

$$
a_{n} x^{n}+\ldots+a_{1} x+a_{0}
$$

as a list of its coefficients

$$
\left[a_{n}, \ldots, a_{1}, a_{0}\right]
$$

The function multiply(p1, p2) returns the product of two polynomials (represented as a list).

Hints

- The above code for the multiply function is available in Polynomials.py. Cut and paste or copy this file to your work folder and add
from polynomials import multiply
to your program.
- The polynomial $x+1$ is represented as [1, 1]
- Use print str(k) + ':' to print k followed by a colon
- Use print Ist to print the list Ist

Exercise

Write a program that prints a table of pairs $k, p(k)$ for k from 1 to 50 . Find the smallest k such that $p(k)>0.5$.

Lab 4: Probability of Matching Birthdays (from Ch 12)

What is the probability $p(k)$ that in a group of k people at least two have the same birthday?

$$
\begin{aligned}
& p(k)=1-q(k)-\begin{array}{l}
\text { where } q(k) \text { is the } \\
\text { probabivith that all the } \\
\text { birthdays are different }
\end{array} \\
& q(k)=\frac{365 \cdot 364 \cdot \ldots \cdot(365-k+1)}{365^{k}}
\end{aligned}
$$

Back to the Big Picture...

- Math-in-CS debates notwithstanding, knowing relevant math makes better CS students and professionals.
- Start in middle school.
- "Problem solving" means solving problems, not just applying familiar skills in familiar ways.
- Proofs are not just boring exercises in geometry.
- Math+CS blend can bring new kinds of recruits to CS: young people who like math but have not considered CS.

