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Preface 
 
This book is a “Python early” remake of our earlier book Mathematics for the Digital 
Age and Programming in Python.  We introduce more Python features earlier, giving 
the reader the necessary tools to start writing Python code sooner and in a more 
“pythonic” (idiomatic) manner.  We have added two chapters — “Turtle Graphics” 
and “Vectors and Matrices” — and a separate section on Fibonacci numbers (in the 
“Sums and Sequences” chapter).  We have updated many examples, exercises, and 
solutions.  And we have changed the title to better match the sequence of topics and 
the fast-changing technological landscape and vocabulary. 
 
But the main idea of the book remains the same: to introduce the discrete 
mathematics concepts that we consider essential knowledge for any literate coder.  
This kind of math is very accessible, yet most K-12 math curricula in the United 
States do not yet include it.  The math segments of this book include many hands-on 
coding exercises, which reinforce students’ learning of both coding and math. 



“So, is this a math book or a computer programming book?”  This is probably the 
first question on the impatient reader’s mind.  But why should it be?  It is a 
librarian’s dilemma: “Does it go on the math shelf or on the computer shelf?”  There 
is a simple solution: put a copy on each. 
 
The purpose of this book is to teach a particular way of thinking — precision 
thinking — and how to solve problems that require this way of thinking.  Both 
mathematics and computer programming nourish the ability to think with precision 
and to solve problems that call for exact solutions. 
 
Mathematics teaches us to appreciate the beauty of a rigorous argument.  In the long 
run, this is more valuable than a lesson on solving today’s practical problems.  Still, 
mathematics does not exist in a vacuum — its abstractions are rooted in practical 
knowledge accumulated over centuries.  The teaching of mathematics draws on 
examples and analogies from the world around us.  At least, it should.  However, the 
world around us is changing more and more rapidly.  In the past 50 or 60 years, our 
world has gone digital.  This change is so profound that it is sometimes hard to fully 
comprehend.  Is that why the change remains largely ignored in our K-12 math 
curricula?  We need to start filling the gap. 



xii PREFACE 

If we could build a time machine and bring Euclid over for a visit, he would find it 
comforting, amid the chaos of modern technologies, that geometry familiar to him is 
still taught in schools.  Old rivals Newton and Leibniz would both find great 
satisfaction in the fact that tens of thousands of 11th and 12th graders are learning 
how to take derivatives and use integrals.  But George Boole, a visitor from the more 
recent past, would have to search through dozens of school textbooks before he could 
find his algebra of propositions mentioned even in passing, even though his name is 
immortalized in every modern computer programming language.  As for John von 
Neumann, a brilliant mathematician and one of the fathers of computer technology...  
well, with his usual optimism he would predict that within 20 years or so, every 
elementary school student will be learning about the AND, OR, and NOT gates.  And 
why not? 
 
In this book we have collected some of the easier mathematical topics that are 
relevant to the digital world.  Many of these topics are often bundled together in 
freshman college courses under the name discrete mathematics.  Discrete 
mathematics has become a euphemism for all elementary mathematics that is relevant 
today but neglected in standard middle and high school algebra, precalculus, and 
calculus courses.  In the 1970s, Donald Knuth and his colleagues at Stanford coined 
the phrase “concrete mathematics” — a blend of CONtinuous and disCRETE 
mathematics (and also solid and not too abstract) — to describe the course Knuth 
taught at Stanford.  Later, Concrete Mathematics became the title of their delightful 
book.1  As they explain in their preface, Knuth “had found that there were 
mathematical tools missing from his repertoire; the mathematics he needed for a 
thorough, well-grounded understanding of computer programs was quite different 
from what he’d learned as a mathematics major in college.” 
 
We believe that college is too late to start.  Many concepts are completely accessible 
to middle and high school students.  And there is also another side to the relationship: 
just as mathematics helps achieve a deeper understanding of computer programs, 
some hands-on experience with computer programming helps make mathematics 
more tangible, more familiar, and easier to grasp. 
 
So, if you are interested mainly in computers, we hope this book will make you a 
better computer programmer.  If you are more interested in math, you will have 
ample opportunities to solve interesting problems and model some of them in 
computer programs.  You will become familiar with fun areas of mathematics that 
are usually kept from middle and high school students; you will learn to solve real 
problems (that is, problems that you don’t already know how to “solve” ahead of 

                                                      
1 Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics: A Foundation 
for Computer Science, Second Edition, Addison-Wesley, 1998. 
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time); you will learn the power of mathematical reasoning and proof.  As a bonus, 
you will acquire the practical skill of programming in Python, a popular commercial 
programming language. 
 
We chose Python for several reasons.  First, Python gives you a chance to experiment 
with the language in an interactive setting with immediate feedback.  Second, 
Python’s syntax is not too complicated.  Third, Python has simple yet powerful 
features for working with lists and “dictionaries” (maps).  Finally, Python is easy to 
install and get started with, and it’s free.  Of course, there are other programming 
languages that have similar properties and would meet our needs.  In the end, it is not 
any particular programming language that matters, but rather the ability to think with 
precision about both mathematical facts and computer programs. 



This book has benefitted from the energy and precision of many friends and allies in 
the K-12 computer science and mathematics community.  
 
We particularly want to thank Abby Ross of Northfield Mount Hermon high school, 
who read the entire book carefully and made many valuable corrections and 
suggestions.  Dr. Patricia M. Davies of Prince Mohammad Bin Fahd University, a 
supporter since this book’s earlier incarnation, read this version carefully and offered 
many useful revisions.  Hans Batra of Needham High School provided helpful 
comments. 
 
The previous incarnation of this book, Mathematics for the Digital Age and 
Programming in Python, benefitted from the ideas and suggestions of friends 
including Dr. J. Adrian Zimmer (Oklahoma School of Science and Mathematics) and 
Kenneth S. Oliver (formerly of Amity Regional High School in Woodbridge, 
Connecticut).  Prof. Duncan A. Buell, then Chair of the Department of Computer 
Science and Engineering at University of South Carolina in Columbia, read a draft 
and suggested many improvements, especially for the Number Theory and 
Cryptology chapter. 
 
We are grateful to Henry Garden for advice on texting habits and to Margaret Litvin 
for proofreading help.  As ever, our deepest gratitude goes to Maria’s math and 
computer science students: they have cheerfully test-driven the exercises presented 
here, provoked many good clarifications, and generally buoyed us with their 
enthusiasm for this material. 
 
 



 
 

How to Use This Book 
 
The Coding in Python and Elements of Discrete Mathematics companion web site — 
 
 http://www.skylit.com/python 
 
— is an integral part of this book.  It contains downloadable student files for 
exercises, Getting Started with Python (Appendix A), links, errata, supplemental 
papers and syllabi, and technical support information for teachers. 
 
PY refers to the Coding in Python student (or teacher) files.  For example, “See 

PY\PythonCode\Fibonacci.py” means the Fibonacci.py file is 
located in the PythonCode folder in StudentFiles (and TeacherFiles). 

 
 Arrow brackets like these, in the margin, mark supplementary material 

intended for a more inquisitive reader.  This material either gives a glimpse 
of things to come in subsequent chapters or adds technical details. 

 

 
 
1., 2. In exercises, a “blue” square indicates an “intermediate” question that may 

require more thought or work than an “easy” question or exercise.  A black 
diamond indicates an “advanced” question that could be treacherous, take a 
lot of work, or lead to unexplored territory. 

 
     A checkmark at the end of a question in the exercises means that the answer or 

a solution is included in the student files.  We have included answers and 
solutions to about half of the exercises.  They can be found in 
www.skylit.com/python/studentfiles.zip/StudentFiles/ 

AnswersAndSolutions.pdf. 
 
Digital teacher files, which contain complete solutions to all the exercises and labs, 
are available free of charge to teachers who use this book as a textbook in their 
school.  Go to skylit.com/python and click on the “Teachers’ Room” link for 
details.  A printed version is available, too. 
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