

Coding
in

Python

and

Elements of
Discrete Mathematics

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin
Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2019 by Maria Litvin, Gary Litvin, and
Skylight Publishing

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the authors and Skylight Publishing.

Library of Congress Control Number: 2019905086

ISBN 978-0-9972528-4-2

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks owned
by corporations and other commercial entities. Skylight Publishing and the authors have no
affiliation with and disclaim any sponsorship or endorsement by any of these products’
manufacturers or trademarks’ owners.

1 2 3 4 5 6 7 23 22 21 20 19

Printed in the United States of America

 To Henry and Esther, digital natives

Brief Contents

Preface xi

Chapter 1. An Introduction to Computers and Coding in Python 1

Chapter 2. Variables and Arithmetic 17

Chapter 3. Sets and Functions 35

Chapter 4. Algorithms and while and for Loops 63

Chapter 5. Strings, Lists, Dictionaries, and Files 77

Chapter 6. Number Systems 109

Chapter 7. Boolean Algebra and if-else Statements 127

Chapter 8. Digital Circuits and Bitwise Operators 149

Chapter 9. Turtle Graphics 167

Chapter 10. Sequences and Sums 191

Chapter 11. Parity, Invariants, and Finite Strategy Games 213

Chapter 12. Counting 235

Chapter 13. Probabilities 253

Chapter 14. Vectors and Matrices 275

Chapter 15. Polynomials 295

Chapter 16. Recurrence Relations and Recursion 311

Chapter 17. Graphs 327

Chapter 18. Number Theory and Cryptology 361

Appendices 387

Index 399

About the Authors

Maria Litvin has taught computer science and mathematics at Phillips Academy
in Andover, Massachusetts, since 1987. Prior to joining Phillips Academy, Maria
taught computer science at Boston University. Maria has co-authored several
popular computer science textbooks — C++ for You++: An Introduction to
Programming and Computer Science (1998), Java Methods: Object-Oriented
Programming and Data Structures (2001-2015), Be Prepared for the AP Computer
Science Exam in Java, and 250 Multiple-Choice Computer Science Questions — as
well as Continental Mathematics League (CML) computer science contests for
elementary and middle school students. As a consultant for the College Board, Maria
provides training for high school AP Computer Science teachers, and, since 2014, as
a Code.org facilitator, Maria has trained hundreds of New England elementary school
teachers in teaching computer science to children in grades K-5. Maria is the
recipient of the 1999 Siemens Award for Advanced Placement for Mathematics,
Science, and Technology for New England and the 2003 RadioShack National
Teacher Award.

Gary Litvin is the co-author of C++ for You++, Java Methods, Be Prepared for
the AP Computer Science Exam in Java, 250 MC Questions, and CML computer
science contests. Gary has worked in many areas of software development, including
artificial intelligence, pattern recognition, computer graphics, and neural networks.
As the founder of Skylight Software, Inc., he developed SKYLIGHTS/GX, one of
the first visual programming tools for C and C++ programmers. Gary led the
development of several state-of-the-art software products, including interactive touch
screen development tools, OCR and handwritten character recognition systems, and
credit card fraud detection software.

 vii

Contents

Preface xi

Chapter 1. An Introduction to Computers and Coding in Python 1

1.1 Prologue 2
1.2 CPU and Memory 2
1.3 Python Interpreter 6
1.4 Using IDLE 12
1.5 Review 15

Chapter 2. Variables and Arithmetic 17

2.1 Prologue 18
2.2 Python Code Structure 18
2.3 Variables 24
2.4 Arithmetic Operators 30
2.5 Review 33

Chapter 3. Sets and Functions 35

3.1 Prologue 36
3.2 Sets in Math and in Python 37
3.3 Ways to Define a Function in Math 43
3.4 Functions in Python 46
3.5 Function Arguments 53
3.6 Python’s Built-In Functions 57
3.7 Review 62

Chapter 4. Algorithms and while and for Loops 63

4.1 Prologue 64
4.2 Algorithms 64
4.3 while and for Loops 67
4.4 Review 75

viii CONTENTS

Chapter 5. Strings, Lists, Dictionaries, and Files 77

5.1 Prologue 78
5.2 Indices, Slices, and the in Operator 79
5.3 Strings 83
5.4 Lists and Tuples 90
5.5 Dictionaries 97
5.6 Files 101
5.7 Review 107

Chapter 6. Number Systems 109

6.1 Prologue 110
6.2 Positional Number Systems 111
6.3 The Binary, Octal, and Hexadecimal Systems 114
6.4 Representation of Numbers in Computers 119
6.5 Irrational Numbers 122
6.6 Review 125

Chapter 7. Boolean Algebra and if-else Statements 127

7.1 Prologue 128
7.2 Operations in Boolean Algebra 129
7.3 Logic and Sets 133
7.4 if-else Statements in Python 138
7.5 Review 147

Chapter 8. Digital Circuits and Bitwise Operators 149

8.1 Prologue 150
8.2 Gates 153
8.3 Bitwise Logical Operators 158
8.4 Review 166

Chapter 9. Turtle Graphics 167

9.1 Prologue 168
9.2 The turtle Module Basics 170
9.3 Coordinates and Text 179
9.4 Colors 185
9.5 Review 190

 CONTENTS ix

Chapter 10. Sequences and Sums 191

10.1 Prologue 192
10.2 Arithmetic and Geometric Sequences 193
10.3 Sums 196
10.4 Infinite Sums 200
10.5 Fibonacci Numbers 204
10.6 Review 212

Chapter 11. Parity, Invariants, and Finite Strategy Games 213

11.1 Prologue 214
11.2 Parity and Checksums 215
11.3 Invariants 220
11.4 Finite Strategy Games 225
11.5 Review 234

Chapter 12. Counting 235

12.1 Prologue 236
12.2 The Multiplication Rule 236
12.3 Permutations 239
12.4 Using Division 242
12.5 Combinations 245
12.6 Using Addition and Subtraction 249
12.7 Review 252

Chapter 13. Probabilities 253

13.1 Prologue 254
13.2 Calculating Probabilities by Counting 254
13.3 More Probabilities by Counting 259
13.4 Multiplication, Addition, and Subtraction 263
13.5 Pseudorandom Numbers 268
13.6 Review 274

Chapter 14. Vectors and Matrices 275

14.1 Prologue 276
14.2 Operations on Vectors 278
14.3 Matrices 285
14.4 Review 294

x CONTENTS

Chapter 15. Polynomials 295

15.1 Prologue 296
15.2 Addition and Subtraction 297
15.3 Multiplication, Division, and Roots 300
15.4 Binomial Coefficients 305
15.5 Review 310

Chapter 16. Recurrence Relations and Recursion 311

16.1 Prologue 312
16.2 Recurrence Relations 312
16.3 Recursion in Programs 314
16.4 Mathematical Induction 321
16.5 Review 326

Chapter 17. Graphs 327

17.1 Prologue 328
17.2 Types of Graphs 331
17.3 Isomorphism of Graphs 335
17.4 Degree of a Vertex 338
17.5 Directed and Weighted Graphs 342
17.6 Adjacency Matrices 346
17.7 Coloring Maps and Graphs 350
17.8 The Four Color Theorem 353
17.9 Review 360

Chapter 18. Number Theory and Cryptology 361

18.1 Prologue 362
18.2 Euclid’s Algorithm 362
18.3 The Fundamental Theorem of Arithmetic 368
18.4 Arithmetic of Remainders 372
18.5 Ciphers 379
18.6 Review 386

Appendix A. Getting Started with Python www.skylit.com/python
Appendix B. Selected Built-In, math, and random Functions 389

Appendix C. String Operations and Methods 391
Appendix D. List, Set, and Dictionary Operations and Methods 395
Index 399

http://www.skylit.com/python/index.html
http://www.skylit.com/python/index.html

 xi

Preface

This book is a “Python early” remake of our earlier book Mathematics for the Digital
Age and Programming in Python. We introduce more Python features earlier, giving
the reader the necessary tools to start writing Python code sooner and in a more
“pythonic” (idiomatic) manner. We have added two chapters — “Turtle Graphics”
and “Vectors and Matrices” — and a separate section on Fibonacci numbers (in the
“Sums and Sequences” chapter). We have updated many examples, exercises, and
solutions. And we have changed the title to better match the sequence of topics and
the fast-changing technological landscape and vocabulary.

But the main idea of the book remains the same: to introduce the discrete
mathematics concepts that we consider essential knowledge for any literate coder.
This kind of math is very accessible, yet most K-12 math curricula in the United
States do not yet include it. The math segments of this book include many hands-on
coding exercises, which reinforce students’ learning of both coding and math.

“So, is this a math book or a computer programming book?” This is probably the
first question on the impatient reader’s mind. But why should it be? It is a
librarian’s dilemma: “Does it go on the math shelf or on the computer shelf?” There
is a simple solution: put a copy on each.

The purpose of this book is to teach a particular way of thinking — precision
thinking — and how to solve problems that require this way of thinking. Both
mathematics and computer programming nourish the ability to think with precision
and to solve problems that call for exact solutions.

Mathematics teaches us to appreciate the beauty of a rigorous argument. In the long
run, this is more valuable than a lesson on solving today’s practical problems. Still,
mathematics does not exist in a vacuum — its abstractions are rooted in practical
knowledge accumulated over centuries. The teaching of mathematics draws on
examples and analogies from the world around us. At least, it should. However, the
world around us is changing more and more rapidly. In the past 50 or 60 years, our
world has gone digital. This change is so profound that it is sometimes hard to fully
comprehend. Is that why the change remains largely ignored in our K-12 math
curricula? We need to start filling the gap.

xii PREFACE

If we could build a time machine and bring Euclid over for a visit, he would find it
comforting, amid the chaos of modern technologies, that geometry familiar to him is
still taught in schools. Old rivals Newton and Leibniz would both find great
satisfaction in the fact that tens of thousands of 11th and 12th graders are learning
how to take derivatives and use integrals. But George Boole, a visitor from the more
recent past, would have to search through dozens of school textbooks before he could
find his algebra of propositions mentioned even in passing, even though his name is
immortalized in every modern computer programming language. As for John von
Neumann, a brilliant mathematician and one of the fathers of computer technology...
well, with his usual optimism he would predict that within 20 years or so, every
elementary school student will be learning about the AND, OR, and NOT gates. And
why not?

In this book we have collected some of the easier mathematical topics that are
relevant to the digital world. Many of these topics are often bundled together in
freshman college courses under the name discrete mathematics. Discrete
mathematics has become a euphemism for all elementary mathematics that is relevant
today but neglected in standard middle and high school algebra, precalculus, and
calculus courses. In the 1970s, Donald Knuth and his colleagues at Stanford coined
the phrase “concrete mathematics” — a blend of CONtinuous and disCRETE
mathematics (and also solid and not too abstract) — to describe the course Knuth
taught at Stanford. Later, Concrete Mathematics became the title of their delightful
book.1 As they explain in their preface, Knuth “had found that there were
mathematical tools missing from his repertoire; the mathematics he needed for a
thorough, well-grounded understanding of computer programs was quite different
from what he’d learned as a mathematics major in college.”

We believe that college is too late to start. Many concepts are completely accessible
to middle and high school students. And there is also another side to the relationship:
just as mathematics helps achieve a deeper understanding of computer programs,
some hands-on experience with computer programming helps make mathematics
more tangible, more familiar, and easier to grasp.

So, if you are interested mainly in computers, we hope this book will make you a
better computer programmer. If you are more interested in math, you will have
ample opportunities to solve interesting problems and model some of them in
computer programs. You will become familiar with fun areas of mathematics that
are usually kept from middle and high school students; you will learn to solve real
problems (that is, problems that you don’t already know how to “solve” ahead of

1 Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics: A Foundation
for Computer Science, Second Edition, Addison-Wesley, 1998.

 PREFACE xiii

time); you will learn the power of mathematical reasoning and proof. As a bonus,
you will acquire the practical skill of programming in Python, a popular commercial
programming language.

We chose Python for several reasons. First, Python gives you a chance to experiment
with the language in an interactive setting with immediate feedback. Second,
Python’s syntax is not too complicated. Third, Python has simple yet powerful
features for working with lists and “dictionaries” (maps). Finally, Python is easy to
install and get started with, and it’s free. Of course, there are other programming
languages that have similar properties and would meet our needs. In the end, it is not
any particular programming language that matters, but rather the ability to think with
precision about both mathematical facts and computer programs.

This book has benefitted from the energy and precision of many friends and allies in
the K-12 computer science and mathematics community.

We particularly want to thank Abby Ross of Northfield Mount Hermon high school,
who read the entire book carefully and made many valuable corrections and
suggestions. Dr. Patricia M. Davies of Prince Mohammad Bin Fahd University, a
supporter since this book’s earlier incarnation, read this version carefully and offered
many useful revisions. Hans Batra of Needham High School provided helpful
comments.

The previous incarnation of this book, Mathematics for the Digital Age and
Programming in Python, benefitted from the ideas and suggestions of friends
including Dr. J. Adrian Zimmer (Oklahoma School of Science and Mathematics) and
Kenneth S. Oliver (formerly of Amity Regional High School in Woodbridge,
Connecticut). Prof. Duncan A. Buell, then Chair of the Department of Computer
Science and Engineering at University of South Carolina in Columbia, read a draft
and suggested many improvements, especially for the Number Theory and
Cryptology chapter.

We are grateful to Henry Garden for advice on texting habits and to Margaret Litvin
for proofreading help. As ever, our deepest gratitude goes to Maria’s math and
computer science students: they have cheerfully test-driven the exercises presented
here, provoked many good clarifications, and generally buoyed us with their
enthusiasm for this material.

How to Use This Book

The Coding in Python and Elements of Discrete Mathematics companion web site —

 http://www.skylit.com/python

— is an integral part of this book. It contains downloadable student files for
exercises, Getting Started with Python (Appendix A), links, errata, supplemental
papers and syllabi, and technical support information for teachers.

PY refers to the Coding in Python student (or teacher) files. For example, “See

PY\PythonCode\Fibonacci.py” means the Fibonacci.py file is
located in the PythonCode folder in StudentFiles (and TeacherFiles).

 Arrow brackets like these, in the margin, mark supplementary material

intended for a more inquisitive reader. This material either gives a glimpse
of things to come in subsequent chapters or adds technical details.

1., 2. In exercises, a “blue” square indicates an “intermediate” question that may

require more thought or work than an “easy” question or exercise. A black
diamond indicates an “advanced” question that could be treacherous, take a
lot of work, or lead to unexplored territory.

 A checkmark at the end of a question in the exercises means that the answer or

a solution is included in the student files. We have included answers and
solutions to about half of the exercises. They can be found in
www.skylit.com/python/studentfiles.zip/StudentFiles/

AnswersAndSolutions.pdf.

Digital teacher files, which contain complete solutions to all the exercises and labs,
are available free of charge to teachers who use this book as a textbook in their
school. Go to skylit.com/python and click on the “Teachers’ Room” link for
details. A printed version is available, too.

xiv

