

Workbook to Accompany

An Introduction to Programming
and Computer Science

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin
Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Copyright © 1998 by
Maria Litvin and Gary Litvin

Workbook to Accompany C++ for You++, AP Edition, by Maria Litvin and Gary Litvin is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

You are free:

• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work

Under the following conditions:

• Attribution — You must attribute the work to Maria Litvin and Gary Litvin (but not in any way that
suggests that they endorse you or your use of the work). On the title page of your copy or adaptation
place the following statement:

Adapted from Workbook to Accompany C++ for You++ by Maria Litvin and Gary Litvin, Skylight
Publishing, 1998, available at http://www.skylit.com.

• Noncommercial — You may not use this work for commercial purposes.
• Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work

only under the same or similar license to this one.

See http://creativecommons.org/licenses/by-nc-sa/3.0/ for details.

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810
(978) 475-1431
e-mail: support@skylit.com
web: http://www.skylit.com

ISBN 0-9654853-8-2

Contents

Chapter 1. Introduction to Hardware and Software 5
Chapter 2. A First Look at a C++ Program...................................... 11
Chapter 3. Variables and Constants ... 17
Chapter 4. Arithmetic Expressions .. 19
Chapter 5. Arrays, apvector and apmatrix Classes 23
 Chapters 1-5 Review... 25
Chapter 6. Logical Expressions and if-else Statements 29
Chapter 7. Iterative Statements: while, for, do-while 33
Chapter 8. The switch Statement ... 39
 Chapters 6-8 Review... 41
Chapter 9. Algorithms.. 43
Chapter 10. Monte Carlo Methods... 47
Chapter 11. Pointers, References, Dynamic Memory Allocation...... 49
Chapter 12. Strings... 53
 Chapters 9-12 Review... 57
Chapter 13. Structures.. 61
Chapter 14. Modularity .. 65
Chapter 15. Classes .. 69
Chapter 16. Templates ... 75
 Chapters 13-16 Review... 79
Chapter 17. Linked Lists.. 83
Chapter 18. Stacks.. 87
Chapter 19. Recursion.. 91
Chapter 20. Queues .. 97
 Chapters 17-20 Review... 99
Chapter 21. Classes: More Advanced Features 103
Chapter 22. Trees ... 105
Chapter 23. Expression Trees .. 109
Chapter 24. Heaps .. 111
Chapter 25. Analysis of Algorithms .. 113
 Chapters 22-25 Review... 115
Chapter 26. Searching and Hashing... 117
Chapter 27. Sorting .. 121
Chapter 28. Inheritance .. 123
�� Projects .. 125

Answers and Solutions ... 133

How to Use this Workbook

Chapter numbers correspond to the chapters in C++ for You++.

An underlined question number indicates that the answer or solution is
provided at the end of the workbook.

Multiple-choice questions are marked by an answer box:

The � symbol marks questions that assume implementation on a
computer.

The � symbol marks questions that require more insight or more detailed
work (intermediate).

The � symbol marks questions that are tricky or require a lot of work
(advanced).

All projects in the “�� Projects” section are challenge projects that
assume computer implementation.

5

Chapter 1. Introduction to Hardware and Software

Are the following entities or devices part of a computer system’s hardware (H) or
software (S)?

1. Operating system ________
2. CPU ________
3. Compiler ________
4. Program editor ________
5. IDE ________
6. GUI (Graphical User Interface) ________
7. Modem ________
8. Assembler ________
9. Bus ________
10. RAM ________
11. ROM ________
12.� File ________

13. What is the maximum number of different codes or numbers that can be

represented in 3 bits? ________ 8 bits? ________

14. An experiment consists of tossing a coin 10 times and its outcome is a sequence

of heads and tails. How many possible outcomes are there? ________

15. A 12-bit A/D converter digitizes amplitudes of an analog signal into 12-bit

numbers. How many different digitized amplitude values are possible?

16. 16-bit addresses can directly address 64KB of memory. How much memory (in

MB) is directly addressable with 32-bit addresses? __________

17.� If a GIGTEL microprocessor can directly address 1024 GB of memory, what

should the width of the address bus be? _________

6 CHAPTER 1 ~ INTRODUCTION TO HARDWARE AND SOFTWARE

Assume that these 8-bit binary numbers represent unsigned integers in the usual
way, with the least significant bit on the right. Write the decimal value and the hex
representation of these binary numbers. Example:

 binary decimal hex
 00011100 28 1C

18. 00000011 _______ _______
19. 00001111 _______ _______
20. 00101111 _______ _______
21. 10000001 _______ _______
22. 11000001 _______ _______
23. 00001011 _______ _______
24. 11110101 _______ _______

Assume that these 16-bit binary numbers represent unsigned integers in the usual
way, with the least significant bit on the right. Write the decimal value and the hex
representation of these binary numbers.
Example:

 binary decimal hex
 00000011 00001111 3*256 + 15 = 783 030F

25.� 00000001 11000011 _________ _______
26.� 00001111 00001011 _________ _______
27.� 10000000 00000000 _________ _______
28.� 11111111 00000000 _________ _______
29.� 10000001 10000001 _________ _______

 CHAPTER 1 ~ INTRODUCTION TO HARDWARE AND SOFTWARE 7

30. (a) Using the ASCII table, write the ASCII codes for the following characters in
decimal, hex and binary:

 decimal hex binary
 'A' _______ ______ ___________
 'a' _______ ______ ___________
 'Q' _______ ______ ___________
 'q' _______ ______ ___________

 (b) Note that the binary representations of the ASCII codes for the lower and

upper case of the same letter differ only in one bit. Write the binary and hex
representations of a byte where that bit is set to 1 and all other bits are set to 0:

 binary hex
 _________ ______

Solve for x, where x is a (decimal) number. A character in single quotes represents
the ASCII code for that character:

31. '5' – x = '0' x = ______
32. 'G' + x = 'g' x = ______
33. x + ']' = '[' x = ______

34. Interpret the following hex dump of an ASCII data file used later in one of the

labs in the book:

45 4E 47 4C 49 53 48 2D–49 54 41 4C 49 41 4E 20 _________________
44 49 43 54 49 4F 4E 41–52 59 0D 0A 77 61 6E 74 _________________
20 20 20 20 76 6F 6C 65–72 65 0D 0A 61 20 20 20 _________________
20 20 20 20 75 6E 0D 0A–49 20 20 20 20 20 20 20 _________________
69 6F 0D 0A 70 72 6F 67–72 61 6D 20 70 72 6F 67 _________________
72 61 6D 6D 61 0D 0A 74–68 69 73 20 20 20 20 71 _________________
75 65 73 74 6F 0D 0A 74–6F 64 61 79 20 20 20 6F _________________
67 67 69 0D 0A 6C 6F 76–65 20 20 20 20 61 6D 61 _________________
72 65 0D 0A _________________

Name the software development tool that transforms:

35. Source code into an object module ___________________
36. Object module(s) into an executable program ___________________

37.� Come up with a method for representing the state of a tic-tac-toe board in

computer memory. Can you fit your representation into three bytes?

8 CHAPTER 1 ~ INTRODUCTION TO HARDWARE AND SOFTWARE

38.� How much memory does it take to hold a 512 by 512 gray-scale image with 16
levels of gray?

39.� When a printer runs out of paper, the eight-bit printer status register of the parallel

interface adapter gets the following settings: bit 7 (leftmost bit), “BUSY,” is set to
1; bit 5, “PE” (“paper end”), is set to 1; and bit 3, “ERROR,” is set to 0. Bit 4 is
always 1 when a printer is connected, bit 6 is 0, and bits 0-2 are not used. Write
the hex value for the bit mask that has bits 0-2 set to 0 and bits 3-7 set to 1. This
mask should “cut out” the important bits from a byte by applying the “and”
instruction. Write the hex value equal to the setting of the printer status register
when the printer runs out of paper.

 Mask: ______________

 Status register: ______________

40.� Serial interface is a standard hardware interface used for connecting input or

output devices—such as modems, mice, digitizing tablets, or printers—to a
computer. A serial interface adapter has an eight-bit line control register that
specifies communication parameters. Bits 0 and 1 (the least significant bits)
specify the number of data bits:

Bit 0 Bit 1 Data bits
0
0
1
1

0
1
0
1

5
6
7
8

Bit 2 specifies the number of stop bits: 0 means 1 stop bit and 1 means 2 stop bits.
Bit 3, when set, enables parity checking, and bit 4 selects odd parity (0) or even
parity (1). Bits 5-7 are set to 0 (not used). Write the hex value that should be
programmed into the line control register for:

 (a) 7 data bits, one stop bit, and even parity _______________
 (b) 8 data bits, one stop bit, and no parity _______________

 CHAPTER 1 ~ INTRODUCTION TO HARDWARE AND SOFTWARE 9

41.� The table below is called a Greco-Roman square: each of the three Latin letters
occurs exactly once in each row and each column; the same is true for each of the
three Greek letters; and each Latin-Greek combination occurs exactly once in the
table:

Aγ Bα Cβ

Bβ Cγ Aα

Cα Aβ Bγ

Substitute the digits 0, 1 and 2 for A, B, C and for α, β, γ (in any order). Convert
the resulting base-3 numbers into decimal (base-10) numbers. The base-3 system
uses only three digits: 0, 1, and 2. The numbers are represented as follows:

 Base 3 Decimal
 0 0
 1 1
 2 2
 10 3
 11 4
 12 5
 20 6
 21 7
 22 8
 100 9

Add 1 to each number. You will get a table in which the numbers 1 through 9 are
arranged in such a way that the sum of the numbers in each row and column is the
same. Explain why you get this result and find a way to substitute the digits 0, 1,
and 2 for letters so that the sum of numbers in each of the two diagonals is the
same as in the rows and columns. What you get then is called a magic square.
Using a similar method, build a 5 by 5 magic square.

10 CHAPTER 1 ~ INTRODUCTION TO HARDWARE AND SOFTWARE

42.� In the Nim game, stones are arranged in piles of arbitrary size. Each player in
turn takes a few stones from any one pile. Every player must take at least one
stone on every turn. The player who takes the last stone wins.

Games of this type often have a winning strategy. This strategy can be
established by tagging all possible positions in the game with two tags, “plus” and
“minus,” in such a way that any move from a “plus” position always leads to a
“minus” position, and from any “minus” position there is always a possible move
into some “plus” position. The final winning position must be tagged “plus.”
Therefore, if the first player begins in a “minus” position, she can win by moving
right away into a “plus” position and returning to a “plus” position on each
subsequent move. If, however, the first player begins in a “plus” position, then
the second player can win, provided he knows how to play correctly.

In the Nim game, we can convert the number of stones in each pile into a binary
number and write these binary numbers in one column (so that the units digits are
aligned on the right). We can tag the position “plus” if the number of 1’s in each
column is even and “minus” if the count of 1’s in at least one column is odd.
Prove that this method of tagging “plus” and “minus” positions defines a winning
strategy. Who wins starting with four piles of 1, 3, 5, and 7 stones—the first or
the second player? What's the correct response if the first player takes five stones
from the pile of 7?

11

Chapter 2. A First Look at a C++ Program

Questions 1-11 refer to the following program:

#include <iostream.h>
#include "apstring.h"

int main()

{
 apstring firstName;

 cout << "Please enter your first name: ";
 cin >> firstName;
 cout << firstName
 << ','
 << ' '
 << "congratulations on your first program!"
 << endl;
 return 0;
}

1.� Enter, compile and run the program.

Mark true or false:

2. The program has no functions. _______
3. apstring is not a reserved word. _______
4. The program prompts the user to enter his or her name. _______
5. firstName is a C++ reserved word. _______
6. #include <iostream.h> is a preprocessor directive. _______
7. Each item displayed with the << operator must be placed on a separate line.

8.� cout is a reserved word. _______

9.� Mark all C++ reserved words in the program.

10.� Find an example in the Dictionary program where \n is used instead of endl.

Rewrite the following statements using only two << operators:

 cout << firstName
 << ','
 << ' '
 << "congratulations on your first program!"
 << endl;

12 CHAPTER 2 ~ A FIRST LOOK AT A C++ PROGRAM

11.� Modify the program so that it supports the following dialog with the user (user
input is shown in bold type):

Please enter your first name: Sheila �
Please enter your last name: Fox
Sheila Fox, congratulations on your second program!

Identify the following statements as referring to required C++ syntax or optional
C++ style:

12. A program begins with two slashes (//). _________
13. The names of all functions begin with a capital letter. _________
14. Each opening brace has a matching closing brace. _________
15. All statements within a pair of matching braces are indented by 4 characters.

16. A closing brace is placed on a separate line. _________
17. A program has a blank line before each function definition. _________
18. One of the functions in the program is called “main.” _________
19. The word IF is not used as a name for a variable. _________

Mark true or false:

20. CHAR is not a reserved word. ______
21. Each C++ statement must be written on a separate line. ______
22. Each preprocessor directive must be written on a separate line. ______
23. C++ functions can be called only from main(). ______
24. Each function must have a return statement. ______
25. The compiler automatically corrects syntax errors. ______
26.� Programming languages usually have less redundancy than natural languages.

Complete each sentence with the word always, sometimes, or never:

27. Function prototypes are __________ placed near the top of the program.
28. Function names __________ begin with the # symbol.
29.� There is ___________ a semicolon after a closing brace.
30.� Program input __________ comes from cin.
31.� Standard library functions' prototypes are _________ provided in system header

files.

 CHAPTER 2 ~ A FIRST LOOK AT A C++ PROGRAM 13

Choose the right word to fill the blank:

32.� #ifdef–#else–#endif directives are used for conditional ___________

(compilation/execution) of a program fragment.
33.� The dict.dat file is ____________ (compiled with/linked with/read by) the

Dictionary program.
34.� The format of the dict.dat file in the Dictionary program must be compatible

with ____________ (C++ syntax/the operating system/the LoadDictionary(…)
function).

Questions 35-39 refer to the following program:

#include <iostream.h>

double Average (double x, double y);

int main()

{
 double a, b;

 cout << "Enter two numbers: ";
 cin >> a >> b;
 cout << "The average of " << a << " and " << b << " is "
 << Average(a,b) << endl;
 return 0;
}

double Average (double x, double y)

{
 return (x + y) / 2.;
}

35. How many functions does this program have? ________
36.� Enter, compile and run the program.
37.� Comment out the line that contains the function prototype. Compile the program

and observe the compiler message.
38.� Delete the prototype and move the function definition above main to make the

program work.
39.� Modify the program so that it prompts the user for three numbers and displays

their average.

14 CHAPTER 2 ~ A FIRST LOOK AT A C++ PROGRAM

Circle all names below that can be used as valid names in a C++ program without
generating a syntax error (even though they may be stylistically awful):

40. 7seas
41. _get_3
42. cin.get
43. Cout
44. long^
45. INT
46. cout_
47. _0

Mark true or false:

48. cin is called the “stream extraction operator.” _______
49. In the statement:

ifstream inFile("DICT.DAT");

ifstream is the standard name of the file output class and inFile is a name
chosen by the programmer. _______

50. The #include <iostream.h> directive must be included in any program that
uses cout or cin. _______

51.� Every program sends its output to cout. _______

52.� What is the output of the following code?

 cout << "Fun"
 << "day\n";

A) Syntax error
B)

Fun day\n
C)

Fun
day

D)
Funday

E) Depends

 CHAPTER 2 ~ A FIRST LOOK AT A C++ PROGRAM 15

53.� Answer Question 52 above for the following code:

 cout << "Fun" << "day" << "\n";

54.� Answer Question 52 for the following code:

 cout << Fun
 << day << "\n";

and

 cout << Fun
 << day << \n;

55.� Write statements that produce the following dialog with the user (the user's input

is in bold):

No errors. �
Enter another file name ==> TEST.DAT

Loading TEST.DAT. Please wait...

56.� Without going too deeply into the meaning of the following code, try to find one

syntax error (a mistake that would be caught by the compiler) and one bug (a
logical mistake not detected by the compiler):

int Minimum(int a[], int n)

// Returns the position of the smallest element in the array "a".
// "n" is the number of elements in the array.

{
 int i, iMin = 0; // iMin is the position of the
 // smallest element.

 for (i = 1; i < n; i++) {
 if (a[i] < a[iMin])
 iMin = i
 }
 return i;
}

16 CHAPTER 2 ~ A FIRST LOOK AT A C++ PROGRAM

57.�� The following program converts temperatures from Celsius to Fahrenheit:

int main()

{
 double degC, degF;

 cout << "Please enter degrees Celsius: ";
 cin >> degC;
 degF = 32. + 9./5. * degC;
 cout << degC << "C is " << degF << "F\n";

 return 0;
}

Restructure the program so that the main program prompts the user and displays
the result but the actual conversion is performed in a separate function:

 double CelToFahr(double x);

17

Chapter 3. Variables and Constants

1. Assuming that the unsigned short data type is implemented as a two-byte
binary value, what is the largest possible value that an unsigned short
variable can hold? Give your answer as a decimal integer.

2. What is the output of the following program?

#include <iostream.h>

int main()

{
 double amt = 100.00;
 cout << sizeof(amt) – sizeof(double) << endl;

 return 0;
}

Which of the following lines are syntactically valid declarations?

3. short years, long hours;
4. unsigned, short positive;
5. double short;
6. double dollars_and_cents;
7. char mi; int age;

8.� Determine how many bytes a long double variable occupies on your system.

9. If character constants in single quotes are represented using ASCII code, what is

the decimal value of '1'+'1'?

Which of the following lines are syntactically valid declarations?

10. int count = 10; count2 = count; neg_count = –count;
11. double x = 0, y = 1, r = x*x + y*y;
12. char A = 'A', C = 67, H = 72;
13. char CR = \n;
14. char exclamation_point = "!";
15. const double pi = 3.14159; double r=3., area = pi*r*r/2.;

18 CHAPTER 3 ~ VARIABLES AND CONSTANTS

Mark true or false:

16. The use of global variables is a sign of good program design. ______
17. If a local and a global variable have the same name, the compiler reports a syntax

error. ______
18. The typedef statement is used to rename variables. ______
19. The scope of a variable is the largest range of its values. ______
20.� Local variables in different functions may have the same name. ______
21.� Local variables in a function may have the same names as the function arguments

in its definition. ______

22. In the following declaration:

 enum COIN {penny=1, nickel, dime, quarter, half_dollar};

what is the value of quarter ? ______

23.�� If you take any two positive integers m and n (m > n), then the numbers

a m n b mn c m n= − = = +2 2 2 22; ;

form a Pythagorean triple:
a b c2 2 2+ =

You can use algebra to prove that this is always true.

Write a program that prompts the user for two positive integers, m and n, and
prints out the corresponding Pythagorean triple (a, b, c).

24.� Find a bug (a logical error or an error in usage not caught by the compiler) in the

following code fragment:

 double a, b;
 int temp;

 cout << "Enter two real numbers: ";
 cin >> a >> b;
 ...
 // Swap the numbers:
 temp = a;
 a = b;
 b = temp;
 ...

19

Chapter 4. Arithmetic Expressions

What is the output of the following statements?

1. cout << 5. / 10 << endl; __________
2. cout << 5 / 10 << endl; __________
3. cout << 1 / 2 * 10 << endl; __________
4. cout << 1. / 2 * 10 << endl; __________
5. cout << 1 / 2. * 10 << endl; __________
6. cout << 5 % 10 << endl; __________
7.� cout << –5 % 10 << endl; __________

Fix the bugs in the following statements:

8.

 const short days = 365, hours = 24, mins = 60, secs = 60;
 cout << "Seconds in a year = "
 << hours * mins * secs * double(days) << endl;

9.

 const double g = 16.;
 double t;
 cout << " Enter time in secs: ";
 cin >> t;
 cout << "The travel distance is " << 1 / 2 * (g * t * t)
 << endl;

10.

 short x, y;

 cout << "Enter two integers x and y: ";
 cin >> x >> y;
 x *= double(x);
 y *= double(y);
 double sq_radius = x + y;
 if (sq_radius > 250000.)
 cout << "(x,y) is outside the circle.\n";

20 CHAPTER 4 ~ ARITHMETIC EXPRESSIONS

11.�� Write a function:

 double BodyMassIndex(int inches, int lbs);

that takes a person's height in inches and weight in pounds as arguments and
returns the body mass index (BMI). BMI is defined as the weight, expressed in
kilograms, divided by the square of the height expressed in meters. One inch is
0.0254 meters and one pound is 0.454 kilograms. Write a program that prompts
the user for his weight and height, calls BodyMassIndex(…), and displays the
BMI.

12.�� Write a function

 int DogsHumanAge(int years);

that converts a dog's age to the corresponding human age. Assume that a dog's
first year corresponds to a human age of 13. After that every three years in a
dog's life correspond to sixteen years in human life. The function returns the
corresponding human age, truncated to the nearest integer. Write a program that
prompts the user for the age of his dog in years (a positive integer), calls the
DogsHumanAge(…) function and displays the result.

13. What is the output of the following statements?

 int c = 3;
 cout << c++;
 cout << c;
 cout << ++c;
 cout << c << endl;

Mark true or false:

14. The result of the statement

 int c = a + b++;

is always the same as the result of

 int c = a + b + 1;

 CHAPTER 4 ~ ARITHMETIC EXPRESSIONS 21

15.� After executing the statements

 w /= 2;
 w *= 2;

the value of the int variable w always remains unchanged. ______

16.� If the value of x is negative, the value of x%3 can be negative. ______
17.� The value of (a+1)%7 is always the same as the value of a%7+1. ______

18.� If double x has a positive value, come up with an expression that rounds x to the

nearest integer.

19.� Write a code fragment that prompts the user to enter a positive two-digit integer,

reads a number into an int variable, computes a new number in which the two
digits are reversed, and displays the result.

20.� Display the value of the INT_MAX constant defined in the limits.h header file

provided with your C++ compiler.

21. Fix the cast operator in the following statements so that it works for all integer

values of n:

 int n;
 long n2;
 ...
 n2 = long(n*n); // set n2 to n squared

22.�� Write a program that supports the following dialog with the user (the user’s input

is shown in bold):

Enter deposit amount (dollars) ==> 900 �
Enter annual interest rate (%) ==> 6

Balance after 1 year: 954.00
Balance after 2 years: 1011.24
Balance after 3 years: 1071.91

Use a variable of an integral type to hold the initial balance entered by the user;
allow amounts between 1 and $1,000,000. Use the simple interest formula: the
balance at the end of the year is equal to the balance at the beginning of the year
times (1 + rate), where the rate is expressed as a decimal.

22 CHAPTER 4 ~ ARITHMETIC EXPRESSIONS

23.�� Write a program that prompts the user for his travel distance, the car’s gas
mileage (mpg) and the price of gas, and displays the estimated cost of gas for the
trip.

24.�� Fill in the blanks in the following program that converts a number of minutes into

hours:minutes.

#include <iostream.h>
#include <iomanip.h>

int main()

{
 int mins;

 cout << "Enter the number of minutes: ";
 cin >> mins;

 cout << __________________________ << ':'
 << setfill('0') // set output fill character to '0'

 << setw(2) << __________________________ << endl
 << setfill(' '); // restore the default fill char

 return 0;
}

23

Chapter 5. Arrays, apvector and apmatrix Classes

Mark true or false:

1. The elements of the array

 char a[5];

are properly referred to as

 a[1], a[2], a[3], a[4] and a[5]. _______

2. The following array has 101 elements:

 int x[100]; _______

3. The following array occupies 120 consecutive bytes in memory:

 short codes[60]; _______

4. apvector is a reserved word. ______

5. The apvector class reports an error when a subscript value is out of bounds.

Which of the following are valid declarations:

6. apvector x(100); _______
7. apvector<int> count; _______
8. apvector<double> coord[100]; _______
9. apvector<int> odd(5) = {1, 2, 3, 5, 7}; _______
10. apvector<bool> flags(5, false); _______

11. Declare an apvector q of 10 chars, all set to '?'.

12. Declare an apmatrix of int with 10 rows and 4 columns called chart.

24 CHAPTER 5 ~ ARRAYS, apvector AND apmatrix CLASSES

13.�� Enter the following declarations and assignments into a test program, compile,
and find out which of them cause problems:

 #include "apvector.h"
 ...
 apvector<int> a; ______
 apvector<int> b(100); ______
 apvector<double> x(100); ______
 a = b; ______
 x = b; ______
 x = double(b); ______

Try to explain why.

14.� The following statements should double the values of the elements of the array

scores. Find the bug.

 int i;
 apvector<int> scores(16);
 ...
 i = 0;
 // Repeat as long as i does not exceed 16:
 while (i <= 16) {
 scores[i] *= 2;
 i++;
 }

25

Chapters 1-5 Review

Complete each sentence with the word always, sometimes, or never:

1. C++ compilers are _______________ implemented in hardware.
2. Data files ______________ use ASCII code.
3. The computer screen _______________ shows characters typed on the keyboard.
4. Output devices are _______________ stream devices.
5.� The 8-bit binary number 11111101 _______________ represents –3.

6. If Byte-a-Bit's pizza can be ordered medium or large with any combination of five

toppings, can the designer of Byte-a-Bit's POS system fit a pizza description into
one byte?

Mark true or false:

7. Each C++ program begins with a comment. ______
8. Each C++ program has at least one function. ______
9. Each function in the source code must also have a prototype near the top of the

program. ______
10. prompt is a C++ reserved word. ______
11. User data is often read into the program by using the stream extraction operator.

Which of the following lines are syntactically valid declarations of variables,
constants, or arrays?

12. double xout = .99;
13. const int hundred = "100";
14. char alarm = \a;
15. const double int secs_in_day = 86400;
16. apvector<int> price(3) = 69, 79, 99;
17. double c–out = 2;
18. unsigned double freq = 166.;
19. enum PRIMCOLOR {Red = 1, Green, Blue = 4};

26 CHAPTERS 1-5 REVIEW

20. What is the output of the following statements if the user enters 3?

 int dist;
 cout << "Enter travel distance in miles: ";
 cin >> dist;
 dist *= 1.6;
 cout << dist << " mi = " << double(dist) << " km\n";

What is printed by the following statements?

21.

 const int boilingPoint = 100;
 cout << "Boiling point Fahrenheit = "
 << int(9. / 5 * boilingPoint + .5) + 32 << endl;

22.

 int c = 3;
 c += 4; c /= 4; c –= 1; c *= 4;
 cout << "c = " << c << endl;

23.� The following code may fail when the variable hours gets a large value:

 ...
 int hours;
 cin >> hours;
 cout << hours << " hours is " << 3600 * hours << " seconds\n";

Change the declaration of hours into a larger integral type and declare and use a
symbolic constant of the appropriate integral type instead of 3600.

24. Write a function

 double Distance(int x1, int y1, int x2, int y2);

that returns the distance between the points (x1,y1) and (x2,y2). The distance
formula is

 d x x y y= − + −() ()2 1

2
2 1

2

and the function should work for all integer values of coordinates. Use the library
function double sqrt(double s), which is declared in math.h.

 CHAPTERS 1-5 REVIEW 27

25. Find the index (subscript) of the middle element in an array:

 apvector<char> test(17);

26. Fill in the blanks in the following function:

double AddEveryOther (const apvector<double> &a)

// Returns a[1] + a[3] + ...
// (the sum of all the elements in odd places).

{
 int i = 1, n = __________________;
 double sum = 0.;

 // Repeat statements within braces as long as i
 // remains less than n:

 while (i < n) {

 ____________+=_____________;

 ____________+=_____________;

 }

 return __________________________;
}

29

Chapter 6. Logical Expressions and if-else Statements

1. Write a function

 double Max(double x, double y);

that returns the larger of the values x and y (or either, if they are equal).

Fill in the blanks in the following functions:

2.

bool isdigit(char d)

// Returns true if d is a digit (in ASCII code), false otherwise.

{
 return __
}

3.

bool isalpha(char c)

// Returns true if c is a letter (in ASCII code),
// false otherwise.

{
 return __

 __
}

4. Find and fix the bug in the following code:

 int mins;
 bool halfHour;
 ...
 // Set halfHour to true when mins is 30 mins after the hour:
 halfHour = (mins % 30 == 0);
 if (halfHour)
 cout << '\a';

30 CHAPTER 6 ~ LOGICAL EXPRESSIONS AND if-else STATEMENTS

Simplify:

5.

 if (!(x == 7) && !(x > 7))
 ...

__

6.

 bool inside = !((x < left) || (x > right) || (y < top)
 || y > bottom));

__

7.

 bool no = (ch[0] == 'N' && ch[1] == 'O') ||
 (ch[0] == 'n' && ch[1] == 'o') ||
 (ch[0] == 'N' && ch[1] == 'o') ||
 (ch[0] == 'n' && ch[1] == 'O');

__

8. Simplify the if statement in the following code:

enum COLOR {WHITE, BLACK};
const int ROWS=480, COLS=640;

apmatrix<COLOR> pixels(ROWS, COLS);
...
 int row, col;
 ...
 if (pixels[row][col] == WHITE && pixels[row][col+1] == BLACK ||
 pixels[row][col] == BLACK && pixels[row][col+1] == WHITE)
 count++;

9. Remove as many parentheses as possible without changing the meaning of the

conditional expression in the if statement:

 if ((((x + 2) > a) || ((x – 2) < b)) && (y >= 0))
 ...

 CHAPTER 6 ~ LOGICAL EXPRESSIONS AND if-else STATEMENTS 31

10.�� Fill in the blanks in the following function:

int HexToDec(char hexdigit)

// Returns the decimal value of the corresponding hexadecimal
// digit, where "hexdigit" is a character '0'–'9' or 'A'–'F'
// (in ASCII code).
// Returns –1, if "hexdigit" is not a valid hex digit.
// Examples: HexToDec('3') returns 3;
// HexToDec('B') returns 11;
// HexToDec('X') returns –1;

{
 int x = –1;

 if (__)

 ___;

 else if (__)

 ___;

 return x;
}

11.�� Priority mail costs $3.00 for the first two pounds and $1.00 for each additional

pound or fraction. First class mail costs 32 cents for the first ounce and 23 cents
for each additional ounce or fraction, up to 11 ounces, after which priority rates
apply. Fill in the blanks in the following function:

enum MAIL {FIRSTCLASS, PRIORITY};

double MailMeter(double ounces, MAIL type)

// Returns the required postage for a letter or package.
// "ounces" is the weight in ounces.
// "type" is the type of service: FIRSTCLASS or PRIORITY.

{
 ...
}

12. Using the rules of short-circuit evaluation, correct the following statement to

prevent accessing elements of the array with subscripts out of bounds:

 const int ROWS = 32, COLS = 32;
 apmatrix<char> grid(ROWS, COLS);
 ...
 if (grid[row–1][col+1] == 'x' && row >= 1 && col < COLS–1)
 ...

32 CHAPTER 6 ~ LOGICAL EXPRESSIONS AND if-else STATEMENTS

13.�� Write a function

 bool Later(int month1, int day1, int year1, int month2,
 int day2, int year2);

that returns true if the second date is later than the first and false otherwise.

14.� Circle all the expressions below that are equivalent (i.e. have the same value for

all values of the boolean variables a and b) to !(a && b):

(a) !a && !b
(b) !a && b
(c) a || b
(d) !a || !b

15.�� U.S. taxpayers use federal income tax schedules like the one below to calculate

their income tax:

 Schedule X —Use if your filing status is Single

If the amount on
Form 1040, line 37,
is:
 Over—

But not
over—

Enter on Form
1040, line 38

of the amount
over—

 $0
23,350
56,550

117,950
256,500

$23,350
56,550

117,950
256,500

............15%
$3,502.50 + 28%
12,798.50 + 31%
31,832.50 + 36%

81,710.50 + 39.6%

 $0
23,350
56,550

117,950
256,500

Taxpayers who are married and file taxes jointly use a similar schedule, Schedule
Y-1, where the rates are the same but the income cutoffs are $0; 39,000; 94,250;
143,600; and 256,500 respectively. Since not all taxpayers have a degree in
accounting, many turn to paid preparers or computer programs.

Write the code for the following function:

enum FILING {SINGLE, MARRIED};

long IncomeTax(long taxableIncome, FILING status)

// Returns the income tax from schedules,
// rounded to the nearest dollar, given taxable income
// in dollars and filing status.

{
 ...
}

33

Chapter 7. Iterative Statements: while, for, do-while

1. How many times is the function sin(x) called in the following code fragment?

#include <math.h>
...
 double sum1 = 0., sum2 = 0.;
 int n = 100;
 while (n > 0) {
 if (sin(M_PI/n) > 0)
 sum1 += sin(M_PI/n);
 else
 sum2 += sin(M_PI/n);
 n––;
 }

2. What is the output of the following program?

#include <iostream.h>

int main()

{
 int count, max = 6;
 for (count = 1; count < max; count++)
 cout << ++count;
 cout << endl;
 return 0;
}

3. Describe the behavior of the following program:

#include <iostream.h>

int main()

{
 int count = 0;

 while (count <= 1) count += 0.1;
 cout << count << endl;
 return 0;
}

A) Syntax errors—will not compile
B) Displays 1.1
C) Displays 1
D) Goes into an infinite loop
E) Displays 0

34 CHAPTER 7 ~ ITERATIVE STATEMENTS: while, for, do-while

4.�� The sum

 ...1...
4
1

3
1

2
11 +−+−+−

n

converges to ln 2 — the natural log of 2 . Write a program that prompts the user
for a positive integer n, estimates ln 2 by adding the first n terms of the sequence,
displays the estimate together with the value of log(2.) returned by the library
function double log(double x), declared in math.h. Note that in C++,
log(…) returns the natural log and log10(…) returns the logarithm base 10.

5.�� Write a function

 double pow(double x, int n);

that returns the value of xn. Assume that x ≠ 0, n ≥ 0.

6.�� Given a positive number a, the sequence of values

x a

x x a
x

nn n
n

0

1

2
1
2

0

=

= +
⎛

⎝
⎜

⎞

⎠
⎟ ≥+ ()

converges to a . Fill in the blanks in the following function that uses iterations
to estimate the square root of a number:

double SqrtEst(double a)

// a is a positive number.
// Returns an estimate r of the square root of a, such that
// |r^2 – a| < 0.01 .

{
 double r = a/2.;
 double diff;

 do {
 __;

 __;

 } while (diff > .01 || diff < –.01);

 return r;
}

 CHAPTER 7 ~ ITERATIVE STATEMENTS: while, for, do-while 35

7. Fill in the blanks in the following function that sets the elements of an array to the
integers 1 through n, where n is the length of the array:

void SetSequence (apvector<int> &v)

// Sets the elements of the vector v to
// consecutive integers, starting from 1.

{
 int i, n = ___________________;

 for (___)

 __;
}

8. Find and fix the bug in the following code:

 apvector<char> hello(6);
 int i;

 hello[0] = ' '; hello[1] = 'h'; hello[2] = 'e';
 hello[3] = 'l'; hello[4] = 'l'; hello[5] = 'o';

 // Shift to the left and append '!':

 i = 0;
 while (i < 6) {
 hello[i–1] = hello[i];
 i++;
 }
 hello[5] = '!';

9. What output is produced by the following statements?

 const int SIZE = 4;
 int i;
 apvector<int> a(2*SIZE, 1);

 for (i = 0; i < SIZE; i++)
 a[2*i] = i + 1;
 for (i = SIZE; i < 2*SIZE; i++)
 cout << a[i] << ' ';
 cout << endl;

36 CHAPTER 7 ~ ITERATIVE STATEMENTS: while, for, do-while

10.�� Write a function

double Polynomial(const apvector<double> &a, double x)

// Returns the value of the n–th degree polynomial
// P(x) = a[0] + a[1]*x + a[2] * x^2 + ... + a[n] * x^n.
// Assumes that the length of a is n+1.
{

}

11.� Fix the bug in the following function (but keep the while loop):

int CountOdds (const apvector<int> &a)

// Returns the number of odd values in the array.

{
 int count = 0, i = 0, n = a.length();
 while (i < n) {
 if (a[i] % 2 == 0) continue;
 count++;
 i++;
 }
 return count;
}

12. What does the MysteryCount(…) function count?

int MysteryCount(const apvector<int> &v)

// Returns ...

{
 int i, n = v.length(), count = 0;

 for (i = 0; i < n; i++) {
 if (v[i] != 0) break;
 count++;
 }
 return count;
}

 CHAPTER 7 ~ ITERATIVE STATEMENTS: while, for, do-while 37

13. Write a function that returns the value of the largest positive element in a 2-D
array, or 0 if all its elements are negative:

double PositiveMax(const apmatrix<double> &m)

// Returns the value of the largest positive element in
// the matrix m, or 0, if all its elements are negative.

{
 __

 __

 __

 __

 __

 __

 __

 __

}

14. The goto statement in the following code betrays an amateur job. Rewrite

without the goto:

 ...
 char answer;
 double totalAmt = 0.;

 next:

 totalAmt += ProcessOrder();
 cout << "Next order (y/n)? ";
 cin >> answer;
 if (answer == 'y')
 goto next;
 ...

38 CHAPTER 7 ~ ITERATIVE STATEMENTS: while, for, do-while

15. Fill in the blanks in the following function:

int AlternateSum(const apvector<int> &v)

// Returns
// v[0] – v[1] + v[2] – v[3] + ... – v[n–1],
// where n is the number of elements. Assumes that n is even.

{
 int i, n = v.length(), sum = 0;

 for (__) {

 }
 return sum;
}

16.�� A non-negative “big integer” is represented as an array of N digits. The value of

each digit is an integer between 0 and 9. The most significant digits are at the
beginning of the array, and zero values indicate leading zeroes. Fill in the blanks
in the following function that calculates the sum of two “big integers,” a and b:

const int N = 100;

void Add(const apvector<int> &a, const apvector<int> &b,
 apvector<int> &sum)

// Calculates the sum of two "big integers" a and b
// represented as arrays of digits. Places the result in the
// array sum.
// Assumes that the result fits into N digits: the overflow
// condition is ignored.

{
 int i, d, carry = 0;

 sum.resize(N);
 for (__) {

 d = a[i] + b[i] + carry;

 sum[i] = ___;

 carry = _______________________;
 }
}

Write a test program that defines and initializes (or lets the user enter) two arrays
and displays their “long” sum.

39

Chapter 8. The switch Statement

1.� A credit card account number is represented as an array of 16 digits. Visa account
numbers start with 4, Mastercard with 5, American Express with 37 and Discover
with 6011. Write a function

 char CreditCardType(const apvector<char> &account);

that identifies the credit card type and verifies the second, third and fourth digits,
where necessary. The function returns the type of the card: V for Visa, M for
Mastercard, A for American Express, D for Discover, and X for all other types or
invalid numbers. Implement your function using a switch on the first digit.

2. Rewrite the following code with no switch or if statements:

 int month, days;
 ...
 switch (month) {
 case 1: days = 31; break;
 case 2: days = 28; break;
 case 3: days = 31; break;
 ...
 case 11: days = 30; break;
 case 12: days = 31; break;
 }

3. If a program declares an enumerated type

 enum COLOR {RED, BLUE, YELLOW, ORANGE, GREEN};

and the program includes a switch statement

 switch (item) {
 ...

then item cannot be of which of the following types?

 A) char B) short C) int D) double E) COLOR

40 CHAPTER 7 ~ THE switch STATEMENT

4.�� Write a function

 void Translate(apvector<char> &str);

that examines a character string str and replaces all tab and newline characters
with spaces; '\' with '/'; '~' with '!'; and double quotes with single quotes.
Use a switch statement.

5.�� Write a program that plays Rock-Paper-Scissors with the user:

Rock... Paper... Scissors... Shoot! �
Make your move (r, p, s) or q (to quit): s

I said Rock
Ha! You are zapped –– 1:0

Rock... Paper... Scissors... Shoot!
Make your move (r, p, s) or q (to quit): p

I said Paper
Paper–aper! Tie –– 1:0

Rock... Paper... Scissors... Shoot!
Make your move (r, p, s) or q (to quit): q

Sorry, you lost! 1:0
Thanks for playing.

Use nested switch statements. Try to invent a simple but not immediately
obvious strategy for the computer, or use your compiler's on-line help to find a
library function that generates random numbers.

41

Chapters 6-8 Review

1. Circle all the expressions below that are equivalent (i.e., have the same value for
all values of the variables a and b) to !(a || !b):

 (a) !a || !b
 (b) !a || b
 (c) !a && b
 (d) !(a–b)

2. Write a function

 char Grade(int score);

that computes the letter grade for a given cumulative score as follows:

 Score Grade
 –––––––––––––––––––––––––––––––
 93 or higher A
 85–92 B
 72–84 C
 60–71 D
 Less than 60 F

3. Write a program that supports the following dialog with the user:

Enter quantity: 75 �
You have ordered 75 floppies –– $19.50

Next customer (y/n): y

Enter quantity: 97
Floppies can be ordered only in packs of 25.

Next customer (y/n): n

Thank you for using Floppy Systems.

(Define the unit price of a floppy disk as a constant equal to 26 cents.)

4. Write a program that produces the following output (where the user may enter any

positive integer under 20):

Enter a positive integer under 20: 6 �
1 + 2 + 3 + 4 + 5 + 6 = 21

42 CHAPTERS 6-8 REVIEW

5. Write a function that determines whether a given number is a median for values
stored in an array:

bool IsMedian(const apvector<int> &sample, double m)

// Returns true if m is a median for values in the array sample,
// false otherwise.
// (Here we call m a median if the number of elements that are
// greater than m is the same as the number of elements that are
// less than m.)

6. Fill in the blanks in the following function:

void Wedge(apvector<int> &w, int n)

// Sets the elements of the array w to values
// 1, 2, ..., n–1, n, n–1, ..., 2, 1.
// Resizes the array as necessary.

{
 int i = 1;

 ________________________;

 while (i <= n) {

 w[______________________] = i;

 w[______________________] = i;

 i++;
 }
}

7.� Finish the poem:

 One, two, buckle your shoe;
 Three, four, shut the door;
 ...
and write a program that displays the appropriate line of your poem:

Enter a number 1–10 (or 0 to quit): 1 �
Buckle your shoe

Enter a number 1–10 (or 0 to quit): 2
Buckle your shoe

Enter a number 1–10 (or 0 to quit): 0
Bye

Use a switch statement.

43

Chapter 9. Algorithms

1.� Write a function

 bool Scramble(apvector<char> &word);

that takes an array of letters and moves them around so that any two elements that
were neighbors become separated. (The values of the characters do not matter:
you can envision them all as different letters.) The function returns true if
successful, false otherwise. Do not use any temporary local arrays.

2. A non-negative “big integer” is represented as an array of N digits. The value of

each digit is an integer between 0 and 9. The most significant digits are at the
beginning of the array, and zero values indicate leading zeroes. Write a function

 void PrintBigInt(const apvector<int> &a);

that displays the number after skipping the leading zeroes.

3. Write a program that converts military time into the a.m./p.m. form:

Enter military time (e.g., 23:59) ==> 19:11 �
 7:11 p.m.

4. Assume for a moment that the C++ binary operators + and – work only for

non-negative numbers and that the result of subtraction must be non-negative,
too; however, the unary negation operator and the relational operators work as
usual. Write a function

 int Difference(int a, int b);

that returns a – b.

44 CHAPTER 9 ~ ALGORITHMS

5.� Fill in the blanks in the following function that returns the average of the two
largest elements of an array:

double AverageTopTwo (const apvector<int> &scores)

// Finds the two largest elements in scores and returns their
// average.
// Assume that the size of the array is >= 2.

{
 int i, size = scores.length();
 int imax1 = 0; // index of the largest element
 int imax2 = 1; // index of the second largest element.

 // if scores[imax2] is bigger than scores[imax1] ––
 // swap imax1 and imax2
 if (scores[imax2] > scores[imax1]) {
 i = imax1;

 }

 for (i = 2; i < size; i++) {
 if (scores[i] > scores[imax1]) {

 }
 else if (__)

 __
 }
 return ______________________________________
}

6.� Recall that 1 3 2 1 2+ + + − =... ()p p for any integer p ≥1 . Write a “simple”

function which finds out whether a given number is a perfect square. A “simple”
function cannot use arrays, nested loops, math functions, or arithmetic operations
except addition.

bool IsPerfectSquare(int n)

// n is any positive integer.
// Returns true if n is a perfect square and false otherwise.
{
 ...
}

 CHAPTER 9 ~ ALGORITHMS 45

7.�� An ISBN (International Standard Book Number) has ten digits. The first nine
digits may have values between '0' and '9'; they identify the country in which the
book was printed, the publisher, and the individual book. The tenth digit is a
check digit assigned in such a way that the number d1d2d3d4d5d6d7d8d9d10 has the
property:

 1 2 3 4 5 6 7 8 9 10(10 9 8 7 6 5 4 3 2) mod 11 0d d d d d d d d d d+ + + + + + + + + =

“mod” stands for modulo division. If d10 needs the value 10 to balance the check
digit equation, then the character 'X' is used. For example, 096548534X is a valid
ISBN.

Note that if we simply took the sum of all the digits, the check digit would remain
valid for any permutation of the digits. Different coefficients make the number
invalid when any two digits are swapped, catching a common typo.

Write a function

 bool IsValidISBN(const apvector<char> &isbn);

that returns true if isbn is a valid number, false otherwise.

8.�� The following function rearranges the elements in an array in such a way that it

ends up partially ordered: all the negative numbers appear to the left of all the
non-negative numbers. Fill in the blanks and test your function.

void SwapPosNeg(apvector<double> &v)

{
 int size = v.length(), i = 0, j = size – 1;
 double temp;

 while (i < j) {
 if (v[i] < 0) // Skip it

 else if (______________) // Skip it

 else { // if both out of place––swap them

 }
 }
}

46 CHAPTER 9 ~ ALGORITHMS

9.�� Write a function that rotates an array of a given size n by a given number of steps

d:

 Rotate (apvector<int> &v, int d);

A positive d rotates the array forward; a negative d, backward. For example, if v
holds elements 1, 4, 9, 16, 25, after Rotate(v,–2) the values in v are 9, 16, 25,
1, 4.

10.�� Write and test a function

 void SpiralPrint (const apmatrix<char> &puzzle);

that prints out all the elements of a 2-D table of symbols in “spiral” order,
clockwise. For example, the table

H e l l
l d ! o
r o W ,

should produce:

 Hello,World!

47

Chapter 10. Monte Carlo Methods

1. Write a function that returns a randomly selected letter between 'A' and 'Z' .

2. Write a function that simulates a throw of two dice and returns the sum of the

points.

3.�� Use the Monte Carlo method to estimate ln 2, the natural logarithm of 2. ln 2 is

equal to the area under the hyperbola y = 1/x between x = 1 and x = 2, and your
estimate should be based on that fact. Compare your result with the value
returned by the library function double log(double x) (declared in math.h).
Note that in C++, log(…) returns the natural logarithm and log10(…) returns
the logarithm base 10.

4.� Write and test a function

 void Shuffle(apvector<int> &v);

that rearranges the elements of a given array in random order, with equal
probability for each outcome.

5.�� Using a Monte Carlo simulation, estimate the probability that at least two people

in a random group of 20 people have birthdays on the same day. Disregard leap
years. Hint: zero out an array of 365 counters, then generate a random set of 20
integers between 0 and 364 and increment counters with the corresponding
subscripts. Check whether any counter is greater than 1. Repeat many times to
estimate the probability of coinciding birthdays.

49

Chapter 11. Pointers, References, Dynamic Memory Allocation

Mark true or false:

1. Both pointers and references hold addresses of memory locations. ______
2. When a reference variable is declared, it must always be initialized. ______
3. The new operator returns a reference. ______
4. References may be used to pass arguments to functions “by reference.” ______
5. A function may return a pointer but not a reference. ______
6. The same variable may appear in the program as both an lvalue and an rvalue.

Which of the following lines are syntactically valid declarations?

7. double amt, *pAmt = 0;
8. char *str, ch = &str;
9. int n, r = &n;
10. char ch, &rch = ch, *pch = &ch;
11.� double z, &z1 = z, &z2 = z;
12.� int k, *pk, **ppk;

What is the output of the following statements?

13.

 char ch1 = '*', ch2 = '+', *s = &ch1;
 ch2 = *s;
 cout << ch1 << ch2;

14.
 int x = 3, y = 9, &r = y, *p;
 p = &y;
 *p = 0;
 cout << x << r;

15.
 double u = 1.1, v = 1.2, *max = &u;
 if (v > u) max = &v;
 cout << *max;

50 CHAPTER 11 ~ POINTERS, REFERENCES, DYNAMIC MEMORY ALLOCATION

16. Write a function bool Reciprocal(…) that takes one argument x of the type
double, passed by reference. If x is not 0, the function sets x to 1/x and returns
true; otherwise it returns false.

17.� Fill in the blanks and test the following function:

bool GetRange(const apvector<int> &v, int &vMin, int &vMax)

// Finds the minimum and the maximum value in the
// array v and places them into vMin
// and vMax, respectively. Assumes that the array is not empty.
// Returns true if not all the elements of the array
// have the same value, false otherwise.

{
 int i, n = ____________;

 vMin = ______________;

 vMax = ______________;

 for (______________________________________) {

 if (_________________________________)

 _____________________________________;

 if (_________________________________)

 _____________________________________;
 }
 return (________________________);
}

18.� Write and test a function

 void SampleStats(const apvector<double> &x,
 double &mean, double &stddev);

that computes the mean and the standard deviation of a statistical sample
(presented as an array of doubles). The mean of a sample x1, ... , xn is defined as:

 m x x
n

n=
+ +1 ...

and the standard deviation is defined as:

s x m x m
n

n=
− + + −() ... ()1

2 2

 CHAPTER 11 ~ POINTERS, REFERENCES, DYNAMIC MEMORY ALLOCATION 51

19. Recall that if a and b are the real and imaginary parts of a complex number, then
that number squared has the real and imaginary parts a2–b2 and 2ab, respectively.
Find and fix the bug in the following code:

void SquareComplex(double &a, double &b)
// Squares a complex number a + bi

{
 a = a*a – b*b;
 b = 2*a*b;
}

20.� Consider the following function:

void RotateVector(double &x, double &y, double &u, double &v)

// For coordinates x, y of a vector on the plane,
// calculates the coordinates u, v of the vector rotated
// 90 degrees counterclockwise.

{
 u = –y;
 v = x;
}

The arguments u and v are properly passed to the function by reference. It works
fine when u and v are different from x and y. For example:

 double x = 0., y = 1., u, v;
 ...
 Rotate(x, y, u, v);
 ...

But what happens if u and v are the same as x and y in the function call? For
example:

 double x = 0., y = 1.;
 ...
 Rotate(x, y, x, y);
 ...

This is a common problem called aliasing: different names x and u in the function
argument list mask the fact that they may actually refer to the same variable. Fix
the code of the function Rotate(…) to avoid the aliasing bug.

(x, y)
(u, v)

53

Chapter 12. Strings

Mark true if the two declarations in a pair can be used interchangeably in all
programs:

1. char msg[] = "Yes";
 char msg[4] = "Yes"; ___________

2. char *msg = "No";
 char msg[3] = "No"; ___________

3. apstring msg = "Maybe";
 char msg[4] = "Maybe"; ___________

4. Find a bug in the following declaration:

 apstring fileName = "c:\dicts\english.txt";
 ...

5.� If the stricmp(…) function compares two null-terminated strings similarly to the

strcmp(…) function but disregards upper- and lowercase letters, determine
whether

 if (stricmp(s1, s2) != 0)

works exactly the same way as

 if (strcmp(strlwr(s1), strlwr(s2)) != 0)

Given the declaration:

 apstring stars = "**********";

which of the following are syntactically correct statements?

6. stars = char stars[10];
7. stars = "char stars[10]";
8. apstring banner = stars;
9.� char *banner = stars;
10.� apstring banner = stars + "–|–|–|–|–";

54 CHAPTER 12 ~ STRINGS

11.� c_str(), a member function in the apstring class, returns a pointer to the
actual null-terminated string buffer associated with the string. For example, in the
following code:

 apstring name;
 cin >> name;
 int len = strlen(name.c_str());

len will get the same value as in

 int len = name.length();

Which of the two versions is more efficient?

12.� What is wrong with the following function definition?

bool AllLetters(const apstring &str, int len)

// Returns true if str contains only letters.
// len is the length of the string.

{
 len = str.length();
 ...
}

Eliminate the redundancy.

 CHAPTER 12 ~ STRINGS 55

13.�� The Cooney game produces the following dialog with the user:

 �
Try to figure out what Cooney likes:

Cooney likes MOON but he doesn't like SUN
Cooney likes SOCCER but he doesn't like HOCKEY
Cooney likes SUMMER but he doesn't like SPRING

Does Cooney like ... (enter one word) ==> computers
No, Cooney doesn't like computers
Another word? (y/n): y

Does Cooney like ... (enter one word) ==> books
Yes, Cooney likes books
Another word? (y/n): n

Guess the rule for words that Cooney likes. Write a function

 bool CooneyLikes(const apstring &word);

and use it in a program that plays the Cooney game. The program automatically
stops after five consecutive correct guesses. Use the apstring class for all
strings.

14.�� Write a program that reads a text file and displays it with a line number at the

beginning of each line.

15.�� In MS DOS/Windows systems, a file name consists of up to eight characters

(excluding '.', ':', back slash, '?', and '*'), followed by an optional '.' and
extension. The extension may contain between zero and three characters. For
example: 1stfile.txt is a valid file name. File names are case-blind. Write
and test a function

 apstring EnterFileName();

that prompts the user to enter a file name, validates the input, displays appropriate
error messages if the name is invalid, appends the default extension ".txt" if no
extension is given (if no '.' appears in the input string), converts the filename to
the upper case, and returns the resulting string to the calling program.

56 CHAPTER 12 ~ STRINGS

16.�� Write a program that accepts user input in the form

 int1 op int2

parses (analyses) the input, and displays the result of the arithmetic operation. Let
int1 and int2 be integers and let op be +, –, * or /.

57

Chapters 9-12 Review

1. Write a function

 int CountRed(const apvector<COLOR> &rgb);

that returns the number of RED values in an rgb array. COLOR is defined as:

 enum COLOR {RED=1, GREEN, BLUE=4};

2. Write a function

 int Max5(const apvector<int> &scores);

that returns the largest sum of five consecutive elements in an array scores.
Assume that scores has at least five elements.

3. Write a function

 void InsertMiddle(apvector<double> &v, double x);

that inserts a value x in the middle of an array v. Assume that the current length
of the array is even and resize it as necessary.

4. Fill in the blanks in the following function:

enum COLOR {WHITE, BLACK};

int CountRuns(const apvector<COLOR> &pixels)

// Returns the number of "runs" in the pixels array.
// A "run" is a segment of all (one or more) consecutive pixels
// of the same color.

{
 int __________________________;

 for (___)

 if (_________________________________)

 ______________________________________;

 return count;
}

58 CHAPTERS 9-12 REVIEW

5.� (a) Write a program that prints out all positive integers under 100 that are equal to
the double product of their digits. For example: 36 = 2(3⋅6).

 (b)� Do the same for all positive integers under 1000 that are equal to four times

the product of their digits.

6.�� Write and test a function

 int CountDifferent (const apvector<int> &a);

that returns the number of different values stored in an array of integers.

7.�� Write a function

 void RandomTime(int &hours, int &mins, char &a_pm);

that sets hours, mins and a_pm to a random time of the day. The function sets
a_pm to either 'a' or 'p'. Test the randomness of your function by verifying
that the fraction of generated times that fall between 9 a.m. and 5 p.m. is close to
1/3.

What is the output of the following code?

8.

 char *yes = "yes";
 if (*yes == 'y') yes = "no";
 cout << yes << endl;

9.
 double z = 2000, ¢ury = z;
 cout << century++;

10.

 int a = –7, b = 3, *p = &a;
 cout << *p;
 p = &b;
 cout << *p << endl;

 CHAPTERS 9-12 REVIEW 59

Write and test the following functions:

11.�

bool HasPunctuation(const apstring &str)
// Returns true if str includes a period, a comma,
// a semicolon, or a colon; false otherwise.

12.�

bool HasWhiteSpace(const apstring &str)
// Returns true if str includes a character classified
// as whitespace by the isspace() function (i.e., space, tab,
// vert. tab, newline, formfeed, or carriage return),
// false otherwise.

13.�

bool HasDuplicates(const apstring &str)
// Returns true if str has at least two identical characters,
// false otherwise.

14.� Using the apstring class functions and operators, write and test a function

 apstring SwapFirstLast(const apstring &name);

The function's argument name contains a person's first and last name (two words,
separated by one space). The function builds and returns a new string in which
the last name is placed first, followed by a comma, a space, and the first name.

15.�� A playing card can be described by its rank (int 1 through 13) and suit:

enum SUIT {SPADE, HEART, DIAMOND, CLUB};

(a) Write a function

 bool FullHouse(const apvector<int> &cardRank);

that returns true if a given poker hand of five cards is a Full House (three cards of
the same rank plus a pair, also matching in rank).

(b) Write a function

 bool StraightFlush(const apvector<int> &cardRank,
 const apvector<SUIT> &cardSuit);

that returns true if a given poker hand of five cards is a Straight Flush (five
consecutive cards of the same suit).

60 CHAPTERS 9-12 REVIEW

16.�� Using a Monte Carlo simulation, estimate the probability of getting a Full House
(three cards of the same rank plus a pair, also matching in rank) on a random deal
out of a deck of 52 cards (four suits, 13 cards of different ranks in each suit).
Compare your estimate with the theoretical result, 6/4165.

61

Chapter 13. Structures

Mark true or false:

1. After the struct Somename {...} definition, Somename becomes a new,

user-defined data type. _________
2. The members of a structure may occupy arbitrary locations in memory. ______
3. The assignment operator, when applied to structures, by default means member

by member assignment. ______
4. Members of a structure may be accessed only through a pointer to the structure.

5. Structures may be passed as arguments to functions both by value and by

reference. ______

Questions 6-11 use the following definitions:

const int MAXCHAPTERS = 30;

struct CHAPTER {
 apstring title;
 int nPages;
 int firstPageNo;
};

struct BOOK {
 apstring title;
 int nChapters;
 apvector<CHAPTER> chapters;
 int nPages;
};

BOOK bk;

6. Write the expression for the number of chapters in bk.

7. Write the expression for the title of the third chapter in bk.

8. Write the expressions for the number of pages and the first page number in the

last chapter in bk.

62 CHAPTER 13 ~ STRUCTURES

9.� Write a function

 void TOC(const BOOK &book);

that prints the table of contents (the title and first page number of each chapter in
the book). In the main program, define and initialize a BOOK variable and test
your function.

10.�� Write and test a function

 void SetPagination(BOOK &book);

that sets the firstPageNo field in each of the chapters, assuming that the
nPages fields are properly initialized. The first chapter must start on page 1, and
each consecutive chapter should start on the next odd page following the end of
the previous chapter. The function should also set the nPages member in the
BOOK structure equal to the total number of pages in the book, which must be an
even number.

11.�� Write and test an overloaded << operator for the BOOK structure that displays the

book title, the number of chapters, and the total number of pages in the book. For
example:

 cout << bk << endl;

The Birds of New England: 9 chapters, 160 pp. �

12.� Design the constants, structures, and data types necessary to represent a computer

data entry form. A form may contain up to 12 fields. Each field is described by
its name, position, width, whether it is alphabetic, numeric, or alphanumeric, and
its current value (a character string). A form is described by its name, the number
of fields it has, and the array of fields. For example, this is a form with three
fields:

INVENTORY �

 Part No.: 53124 Descr: Machine screw 1 1/2 x 3/16_____

 Price: $____.06

 CHAPTER 13 ~ STRUCTURES 63

Questions 13-16 refer to a file of credit card transaction records that contains fixed-
length records of 77 bytes in the following format:

0 1 2 3 4 5 6 7
01234567890123456789012345678901234567890123456789012345678901234567890123456
 Date TranCode Amt SIC MerchAcct Merchant_Name City ST
06–29–93 253 41.50 7996 17018103250 SEA WORLD OF CALIFO SAN DIEGO CA �
...

(The transaction code, an integer, indicates cash, merchandise, or another type of
transaction. SIC is the standard four-digit industry classification code for the
establishment.) A sample file, TRANSACT.DAT,� has a few records in the
specified format.

13. Define a TRANSACTION structure that would represent all the information from a

transaction record, and at the same time would be convenient for sorting the
records by date and for calculating the total amount of several transactions.

14.�� Write an overloaded << operator for the TRANSACTION structure that outputs a

transaction in the format of the transaction file record.

15.�� Write and test an overloaded >> operator that reads a transaction file record into a

TRANSACTION structure.

16.�� Write a program that takes two transaction files, sorted by date, and merges them

into one sorted file.

65

Chapter 14. Modularity

1. Describe the behavior of the following code:

#define sells shells
#ifdef sells
 cout << "She sells sea"
 cout <<
#include "sells"
 << endl;
 cout << "by the seashore" << endl;
#endif

where the file sells contains just one line:

 "shells"

A) Won't compile: syntax error
B) No output
C) Displays:

She sells seasells
by the seashore

D) Displays:

She sells seashells
by the seashore

E) None of the above.

2. Name at least five important advantages of modular programs:

 (a) ___

 (b) ___

 (c) ___

 (d) ___

 (e) ___

66 CHAPTER 14 ~ MODULARITY

3. A project consists of two source modules, test.cpp and module2.cpp, and a
header file somefun.h. test.cpp contains main(), which calls SomeFun()
twice. module2.cpp contains OtherFun(), which calls SomeFun() once.
somefun.h contains the definition of SomeFun():

static void SomeFun() {cout << "Oh, what fun...\n";}

Both test.cpp and module2.cpp include iostream.h and somefun.h at the
top.

Describe the program’s behavior:

A) Runs OK. The executable program contains only one copy of SomeFun's code.
B) Runs OK. The executable contains 2 identical copies of SomeFun's code.
C) Runs OK. The executable contains 3 identical copies of SomeFun's code.
D) Compile error on one or both of the modules.
E) Link error.

4. Answer Question 3 above where the keyword static is replaced by inline.

5. Answer Question 3 where the keyword static is removed.

6. A function that is called only internally within the module that defines it should

be declared static for the following reasons:

A) To document the fact
B) To save space in the table of globals
C) To avoid name clashes with functions in other modules
D) All of the above
E) None of the above

7. Explain the reasons for putting the text of a header file between directives:

#ifndef SOMENAME
#define SOMENAME

...

#endif

 CHAPTER 14 ~ MODULARITY 67

Mark true or false:

8. The compiler builds a table of all unresolved externals for each module. ______
9. If a static function is placed in a header file, its compiled code will be duplicated

in every module that includes that header file. ______
10. Inline functions save space in the object code. ______
11. The term locality describes reduced interdependence between modules. ______
12. Static functions in different modules of the same project may have the same

name. ______

13. What is wrong with a project in which functions from module A call a function

from module B and another function from module B calls functions from
module A?

A) The program goes into an infinite loop
B) It will be impossible to create the header file(s)
C) The linker won't be able to resolve externals
D) Code will be duplicated in object modules
E) Inelegant design

69

Chapter 15. Classes

Mark true or false:

1. Classes and structures differ only in the default access property classification of

the first unmarked group of members: private or public. ______
2. Only data members of a class can be private. ______
3. A class's source code can be compiled separately. ______
4. Functions defined inside a class definition are automatically treated as inline

functions. ______
5. Public members of the class can be accessed without a prefix anywhere in the

program. ______
6. Inline member functions cannot be overloaded. ______

Complete each sentence with the word always, sometimes, or never:

7. Constructors _____________________ take arguments.
8. Destructors ______________________ take arguments.
9. A constructor ______________________ has the same name as its class.
10. Inline member functions in a class are ______________________ declared in the

class's header file.
11. Constructors __________________________ return a value.
12. Constructors __________________________ dynamically allocate memory by

using the new operator.

Choose the right word to fill the blank:

13. Data members of a class are made private to achieve

______________________________ (encapsulation / reusability / simpler user
interface to a class).

14. A constructor is called ____________________ (automatically / only / explicitly)

when a variable of the class type is declared.

15. A destructor is called automatically when a variable of the class type

______________________________ (is set to 0 / goes out of scope / is passed to
a function).

16. “Accessors” are member functions that provide access to the

_________________________ (public / private / static) data members of the
class.

70 CHAPTER 15 ~ CLASSES

17. “Modifiers” are used to__________________________(validate arguments for /

change / overload) private members of the class.

Determine whether the following statements refer to required C++ syntax or
optional C++ style:

18. Names of member functions begin with a capital letter. _______
19. Local variables in member functions do not have the same names as class

members. _______
20. Variables of the class type have different names from class members. _______
21. A class definition is placed in the header file. _______
22. All of a class's member functions are placed in the same source file. _______

23. In the following code,

class MYCLASS {

 int mNumber;
 ...
};

mNumber is:

A) private B) static C) inline D) global E) public

 CHAPTER 15 ~ CLASSES 71

24.� Describe the behavior of the following program:

#include <iostream.h>

class POINT {

 public:
 double GetX() {return x;}

 private:
 double x, y;
};

int main()

{
 POINT point;
 double x, y;

 x = 200.;
 cout << GetX() << endl;
 return 0;
}

A) Compile error B) Link error C) Displays 0 D) Displays 200
E) Output may vary from run to run

72 CHAPTER 15 ~ CLASSES

25.� Find a bug in the POINT::MoveTo(…) member function:

// POINT.H

const double WIDTH = 1024.;
const double HEIGHT = 768.;

class POINT {

 private:
 double x, y;

 public:
 // Modifier
 void MoveTo(double ax, double ay);
};

// POINT.CPP

#include "point.h"

void POINT::MoveTo(double ax, double ay)

{
 double x, y;

 if (ax >= 0. && ax <= WIDTH && ay >= 0. && ay <= HEIGHT) {
 x = ax;
 y = ay;
 }
}

26. The apvector class's destructor contains the statement:

 delete [] mList;

Explain why delete is used with brackets, rather than simply

 delete mList;

 CHAPTER 15 ~ CLASSES 73

27. How many times is the constructor MYCLASS()called in the following code?

int main()

{
 MYCLASS x, y;

 for (int i = 0; i < 3; i++) {
 MYCLASS z;
 ...
 }
}

A) 1 B) 2 C) 3 D) 4 E) 5

Mark true or false:

28. A class may have another class as a member. _______
29. A structure may have a function as a member. _______
30. A constructor may return a value. _______
31. An “accessor” member function cannot take arguments. _______
32. A structure and a class may have the same name in the same module. _______

Complete each sentence with the word always, sometimes, or never:

33. Data members of a class are ______________________ private.
34. Function members of a class are ________________________ private.
35. A class's destructor _______________________ de-allocates memory.
36. A class ____________________ has more than one constructor.
37.� A class ____________________ has a data member.

38. Explain encapsulation.

75

Chapter 16. Templates

Mark true or false:

1. Templated functions and classes are used to implement the same functionality for

different data types. ______
2. A template function may have more than one parameterized type. ______
3. The compiler generates code for a template function or class only when it sees

how that function or class is used. ______
4. Templated classes may use only a built-in type as a parameter. ______
5. Templates enhance the type checking discipline of C++. ______

Write and test a templated function that returns:

6.� The absolute value of a number.
7.� The average of two numbers, returned as a double.
8.� The maximum of two values.

Consider the templated function OrderPair(…):

template <class SOMETYPE>
void OrderPair(SOMETYPE &x, SOMETYPE &y)

// Swaps the variables x, y if necessary to put them
// in ascending order.

{
 if (x > y) {
 SOMETYPE temp = x;
 x = y;
 y = temp;
 }
}

Which of the following pairs of variables can be arguments to this function for it to
work as expected?

9. int x = 2, y = 1;
10. double x = 2., y = 1.;
11.� long x = 2; int y = 1;
12.� apvector<int> x(2, 1), y(2, -1);
13.� apstring x = "Boston", y = "Atlanta";
14.� char *x = "Boston", *y = "Atlanta";

76 CHAPTER 16 ~ TEMPLATES

15. Write a templated function that sorts an array of values using the selection sort
algorithm. Test it on integers and apstrings.

16.� The following class implements a point on a 2-D plane:

// POINT.H
class POINT {

 private:
 double x, y;

 public:
 POINT() {x = 0; y = 0;}
 POINT (double ax, double ay) {x = ax; y = ay;}
 double GetX() {return x;}
 double GetY() {return y;}
 void MoveTo(double ax, double ay) {x = ax; y = ay;}
};

Convert it into a templated class so that it works with x-y coordinates of any
numeric type. Verify that your class works with integers as well as doubles.

17.� The templated class SEGMENT represents a line segment on a plane by its two

endpoints. The member function Stretch3() stretches the segment by a factor
of three from its midpoint:

template <class COORD>
class SEGMENT {

 private:
 COORD x1, y1;
 COORD x2, y2;

 public:
 ...
 void Stretch3();
};

template <class COORD>
SEGMENT::Stretch3()

{
 COORD xMid = (x1 + x2) / 2;
 x1 = xMid + 3*(x1 – xMid);
 x2 = xMid + 3*(x2 – xMid);
 COORD yMid = (y1 + y2) / 2;
 y1 = yMid + 3*(y1 – yMid);
 y2 = yMid + 3*(y2 – yMid);
}

The class is intended to work with int and double data types, but it does not.
Fix the bug.

77

Chapters 13-16 Review

Given the following declarations:

struct BigInt {
 char sign;
 apvector<int> digits;
};

BigInt x, *p;
apvector<BigInt> v(5);

which of these lines are syntactically correct?

1. int x = x.digits[0];
2. int y = x.digits[3];
3. int digits = v[3].digits[3];
4. char sign = p–>sign;
5. BigInt z = v[0];
6. int n = v[3].digits.length();

Questions 7-8 refer to the structure STUDENT, defined as follows:

struct STUDENT {
 apstring name;
 double GPA;
};

7. Write an overloaded << operator for the structure STUDENT.
8. Write an overloaded < operator for the structure STUDENT that compares students

according to their GPAs.

9. What are the advantages of using a header file over explicitly including its text

into each module that needs it?
I. Saves space in source modules
II. Saves space in object modules
III. Simplifies software maintenance

A) I only B) I and II C) I and III D) II only E) I, II, and III

10. How do you protect a header file from being included in the same module twice?

78 CHAPTERS 13- 16 REVIEW

11. Write a function that prints

Please send $25.00 to have the data on your hard drive restored �

when the identifier HITDISK is #define'd, and

Thank you for using X–SELL by Ransom Software �

otherwise.

12. What happens when the following declarations are placed in a header file?

 extern double pi;
 double pi = 3.14;

A) Always works fine
B) Works only for a one-module project, but is a bad design decision
C) Always produces linker error “Multiple definitions of pi”
D) Always produces compiler error “Undefined variable pi”
E) None of the above

Complete each sentence with the word always, sometimes, or never:

13. A constructor is ___________________ called explicitly.
14. A templated class __________________ works with integers and doubles.
15. A structure ____________________ has a destructor.
16. A templated function ________________ returns a value of the parameterized

data type.
17. An inline function is ___________________ defined as a templated function.

 CHAPTERS 13- 16 REVIEW 79

18.� Given the definitions:

// LADDER.H

class LADDER {

 public:

 LADDER(int size);
 ~LADDER();
 int Add();

 private:

 int *mList;
 int mSize;
};

// LADDER.CPP

LADDER::LADDER(int size)

{
 int i;
 mList = new int[size];
 mSize = size;
 for (i = 0; i < size; i++)
 mList[i] = i+1;
}

LADDER::~LADDER()

{
 delete [] mList;
}

int LADDER::Add()

{
 int i, sum = 0;
 for (i = 0; i < mSize; i++)
 sum += mList[i];
 return sum;
}

fill in the blanks in main() to declare an instance of the class LADDER and use it
to print the sum 1 + 2 + 3 + ... + 30.

Continued ®

80 CHAPTERS 13- 16 REVIEW

#include "ladder.h"

int main()

{
 _______________________________________;

 cout << __;

 return 0;
}

81

Chapter 17. Linked Lists

Mark true or false:

1. The term Abstract Data Type refers to a data type that is not a C++ built-in data

type. _______
2. One of the advantages of linked lists over arrays is that we can find an element

quickly in an ordered list. _______
3. A linked list takes more memory than an array to store the same number of data

elements of the same type. _______
4. It usually takes less computer time to concatenate two arrays than two linked lists.

5. It usually takes less computer time to concatenate two linked lists with a tail than

two regular singly linked lists. ______

6. Given the declarations

struct NODE {
 int data;
 NODE *next;
};

NODE
 node3 = {13, __________ },
 node2 = {11, __________ },
 node1 = {7, _________ },
 *head = &node1;

fill in the blanks in the initialization of node3, node2 and node1, so that node1,
node2, and node3 form a linked list pointed to by head. Use the “address of”
operator.

 7. Given the following declaration:

struct NODE {
 SOMETYPE info;
 NODE *next;
};

write a function

 void Rotate (NODE* &head);

that splits off the first node of the linked list pointed to by head and appends it at
the end of the list. The function should accomplish this by rearranging pointers:
do not allocate new nodes or move data items between nodes.

82 CHAPTER 17 ~ LINKED LISTS

8. Write a function

 NODE *Copy(NODE *head);

that creates a copy of a linked list and returns a pointer to its head.

9.�� Given the declarations

struct POINT {
 double x;
 double y;
};

struct NODE {
 POINT vertex;
 NODE *next;
};

write a function

 void RemoveClosestVertex(const POINT &p, NODE* &polygon);

where polygon is the head of a linked list, passed by reference. The function
finds the vertex closest to p and removes it from the list. Use the distance
formula:
 d x x y y2

2 1
2

2 1
2= − + −() ()

 CHAPTER 17 ~ LINKED LISTS 83

10.�� Given the declarations

enum COLOR (RED = 1, GREEN, BLUE = 4};

struct POINT {
 double x;
 double y
};

struct RECT {
 double left; // left < right;
 double right;
 double top; // top < bottom;
 double bottom;
 COLOR color;
};

struct NODE {
 RECT rect;
 NODE *next;
};

write a function

 bool IsInRed (const POINT &p, NODE *sketch);

where sketch is a linked list of rectangles of various colors. The function
returns true if p is inside any red rectangle on the list, false otherwise.

11.�� Given the declarations

struct NODE {
 apstring data;
 NODE *prev;
 NODE *next;
};

struct LIST {
 NODE *head;
 NODE *tail;
};

write a function

 void Append(LIST &list1, LIST &list2);

where list1 and list2 are doubly linked lists. The function concatenates
list2 to list1. Do not allocate or delete any nodes, just concatenate the lists
and update the list1 structure.

84 CHAPTER 17 ~ LINKED LISTS

12.�� In a circular linked list:

struct NODE {
 int data;
 NODE *next;
};

NODE *head;

the next pointer in the last node is set not to null, but to the first node of the list
(in other words lastnode–>next == head). Write a function

 int Sum(NODE *head);

that returns the sum of all data elements in the list.

85

Chapter 18. Stacks

1. What is the output of the following code:

 apstack<char> stack;
 char ch;

 stack.push('A');
 stack.push('B');
 stack.push('C');
 while (!stack.isEmpty()) {
 stack.pop(ch);
 cout << ch;
 }
 cout << endl;

A) None B) ABC C) CCC D) CBA E) C

2. If apstack<int> stack contains

 (top) –1 3 7 –2 4 –6

what is its content after the following code is executed?

 ...
 int x;
 apstack<int> stackPos, stackNeg;

 while (!stack.isEmpty()) {
 stack.pop(x);
 if (x >= 0)
 stackPos.push(x);
 else
 stackNeg.push(x);
 }

 while (!stackPos.isEmpty()) {
 stackPos.pop(x);
 stack.push(x);
 }

 while (!stackNeg.isEmpty()) {
 stackNeg.pop(x);
 stack.push(x);
 }
 ...

 __

86 CHAPTER 18 ~ STACKS

3. The following code uses an array of 5 stacks of integers:

#include "apstack.h"
...
 apvector<apstack<int> > stacks(5);
 int i, count, k;

 // Set up the first stack:
 for (k = 1; k <= 5; k++)
 stacks[0].push(k);

 // Pop from the previous stack and push on the next stack:
 for (i = 1; i < 5; i++) {
 for (count = 0; count < 5 – i; count++) {
 stacks[i–1].pop(k);
 stacks[i].push(k);
 }
 }

 // Print all stacks:
 for (i = 0; i < 5; i++) {
 while (!stacks[i].isEmpty()) {
 stacks[i].pop(k);
 cout << k;
 }
 }

What is the output?

A) 12345 B) 54321 C) 15243 D) 12435 E) No output

4. In the following code, a stack of integers is used. Find and fix a bug in the code.

#include "apstack.h"

struct POINT {
 int x;
 int y;
};
...
 POINT cursor;
 apstack<int> stack;
 ...
 stack.push(cursor.x); // Save cursor position
 stack.push(cursor.y);
 OpenWindow(newApplet); // Open a new window
 ...
 stack.pop(cursor.x); // Restore cursor position
 stack.pop(cursor.y);
 DrawCursor(cursor);

 CHAPTER 18 ~ STACKS 87

5.�� The following program reads a binary number (a string of binary digits) from cin
and displays the number as a decimal. Explain why the use of a stack here is
overkill; rewrite without the stack.

#include <iostream.h>
#include "apstring.h"
#include "apstack.h"

int main()
{
 int i;
 apstring binnum;
 char ch;
 apstack<int> stack;
 int dig, val = 0, power2 = 1;

 cin >> binnum;
 for (i = 0; i < binnum.length(); i++) {
 ch = binnum[i];
 if (ch != '0' && ch != '1') break;
 stack.push(ch – '0'); // Push the int value: 0 or 1
 }

 while (!stack.isEmpty()) {
 stack.pop(dig);
 val += dig * power2;
 power2 *= 2;
 }
 cout << val << endl;
 return 0;
}

88 CHAPTER 18 ~ STACKS

6.� A stack of characters can be implemented using the apstring class discussed in
Chapter 12. Does the following code correctly implement the push and pop
functions?

apstring stack; // Declare an empty stack of chars;

void push (apstring &stack, char ch)
{
 if (stack.length() < MAXLENGTH)
 stack += ch;
}

void pop (apstring &stack, char &ch)
{
 int len = stack.length() – 1;
 if (len >= 0) {
 ch = stack[len];
 stack = stack.substr(0, len);
 }
}

Review the code for the += operator and the substr() function in
apstring.cpp and discuss the merits of the above implementation of stack.

89

Chapter 19. Recursion

1. A mystery function is defined as follows:

void MysteryFunction(int n)

{
 if (n < 0) return;
 cout << n;
 MysteryFunction(n–1);
 cout << n;
}

What output is produced by this call?

 ...
 MysteryFunction(3);
 ...

A) 33 B) 32103 C) 30123 D) 32100123 E) The program hangs

2. What is the output when Enigma(n) is called with the argument 3?

void Enigma (int n)

// Prints something...

{
 int i;

 for (i = 0; i < n; i++)
 Enigma(i);
 cout << n;
}

A) 0123 B) 3210 C) 00123 D) 00100123
E) None of the above

90 CHAPTER 19 ~ RECURSION

3. What happens when a function fun1(…) calls fun2(…) and fun2(…) calls
fun1(…) (assuming proper function prototypes and definitions)?

A) Compiler error
B) Link error
C) The program always aborts with the “stack overflow” error
D) The program always goes into an infinite loop
E) Depends: may work fine in certain recursive programs

4. A picture consists of graphic elements and embedded pictures. Let us represent a

picture as a linked list with nodes:

struct NODE {
 GRAPHOBJECT elmt;
 NODE *subpicture; // "subpicture" itself is a list of elements.
 NODE *next;
};

Assuming that

 void Draw(const GRAPHOBJECT &elmt);

draws a graphic element, the function that draws the whole picture may look as
follows:

void DrawPicture (NODE *picture)

// Draws a picture and all its subpictures. A picture is
// represented as a linked list pointed to by "picture".

{
 for (NODE *node = picture; node; node = node–>next) {
 Draw(node–>elmt); // Draw the element

 // Draw the subpicture
 __;
 }
}

Explain why this function does not seem to have an explicit base case and fill in
the blank for the recursive call.

 CHAPTER 19 ~ RECURSION 91

5. Predict the output of MysterySum(10), where

int MysterySum(int n)

{
 if (n == 1)
 return 1;
 else
 return MysterySum(n–1) + 2*n – 1;
}

Justify your answer by using mathematical induction. Explain why this is an
inappropriate use of recursion.

6.� Fill in the blanks in the following function:

long CountPaths(int x, int y)

// Returns the number of all possible paths from the point(0,0)
// to the point(x,y), where x and y are any non–negative
// integers. From any point the path may extend only
// up or to the right by one unit (i.e., one of the current
// coordinates x or y can be incremented by one).

{
 if (x <= 0 || y <= 0)

 return _______________;

 else

 return ___

 ___;
}

92 CHAPTER 19 ~ RECURSION

7.� On Beavis Island the alphabet consists of three letters — A, B, and H — but no
word may have two A's in a row. Fill in the blanks in the following recursive
function, AllWords(…) that prints out all Beavis Island words of a given length:

void AllWords(apstring &wordBuf, int count)

// wordBuf is a string of a given length. It contains
// the initial sequence of letters in a word
// that is being built.
// count is the number of letters currently in wordBuf.
//
// Call from main (or from another function) as follows:
// apstring wordBuf = "******"; // A string of a given length;
// AllWords(wordBuf, 0);

{
 if (count == wordBuf.length()) {
 // Base case:

 _______________________________; // Display the string
 }
 else { // Recursive case:

 if (count == 0 || wordBuf[count–1] != 'A') {
 // Append 'A' only if last
 // letter is not an 'A'

 __;

 __;
 }

 __; // Append 'B'

 __;

 __; // Append 'H'

 __;
 }
}

 CHAPTER 19 ~ RECURSION 93

8.� Suppose we have a set of positive integers. We want to choose several of them so
that their sum is as large as possible but does not exceed a given limit. This type
of problem is called a Knapsack Problem. For example, we may want to choose
several watermelons at the market so that their total weight is as large as possible
but does not exceed the airline limit for one bag.

Write a recursive function that solves a simplified Knapsack Problem: it only
calculates the optimal sum but does not report the selected items:

int KnapsackSum(const apvector<int> &w, int n, int limit)

// w contains positive integers.
// "n" is the number of elements in the array.
// Returns the sum of some elements of the array,
// so that it has the largest possible value that
// does not exceed "limit".

Use mathematical induction to prove that your code is correct. Can you think of
an algorithm that uses neither recursion nor a stack?

95

Chapter 20. Queues

1. The most economical structure for the linked-list implementation of a queue is

A) A singly linked list B) A doubly linked list
C) A linked list with a pointer to the tail D) A circular list
E) None of the above

2. The following class implements a ring-buffer queue of characters:

const int BUFSIZE = 256;
class RBQUEUE {
 ...
 private:
 char buf[BUFSIZE];
 int front;
 int rear;
};

front is the index of the first element and rear is the index of the first vacant
slot. Write a member function

 int RBQUEUE::length();

that returns the number of elements in the queue.

3. The IBM PC BIOS uses a keyboard ring buffer of 16 bytes, starting at the address

40:1E. The two-byte locations 40:1A and 40:1C represent the front and the
rear of the keyboard queue respectively. These are integer addresses (offsets
from 40:0) stored with the least significant byte first. Each pressed keyboard key
adds two bytes to the keyboard buffer: the ASCII code of the character followed
by the so-called scan code that represents the location of the key on the keyboard.
Examine the following hex memory dump and determine the current contents of
the keyboard queue and the last eight characters typed.

 _0 _1 _2 _3 _4 _5 _6 _7 _8 _9 _A _B _C _D _E _F

0040:0010 28 00 28 00 30 0B
0040:0020 3A 27 31 02 61 1E 0D 1C–64 20 20 39 34 05

96 CHAPTER 20 ~ QUEUES

4. The following code uses two queues of integers:

#include "apqueue.h"
...
 apqueue<int> q1, q2;
 int k1, k2, sum;

 for (k1 = 1; k1 <= 4; k1++)
 q1.enqueue(k1);
 q2.enqueue(1);
 q2.enqueue(1);
 while (!q1.isEmpty() && !q2.isEmpty()) {
 q1.dequeue(k1);
 q2.dequeue(k2);
 sum = k1 + k2;
 cout << sum << ' ';
 q2.enqueue(sum);
 }

What is the output?

A) 2 3 5 8 B) 2 4 6 5 C) 2 4 7 11 D) 2 3 4 5
E) None of the above

5.�� The Total Image beauty salon offers its customers a car wash while they are

getting a haircut. In its first month, The Total Image was flooded with
customers, forcing the owner to install a computer system to keep things under
control. The software uses four queues: arriving customers and their cars are
assigned to the “hairdresser” and the “car wash” queues; when processed, they are
moved to the “hair ready” and “car ready” queues. These four events are entered
into the system by a human operator. The “asynchronous” handling is required
because the duration of haircuts and car washes can vary. Write a program that
properly processes the four operator commands corresponding to the four events
and notifies a customer when he or she is “all set.”

97

Chapters 17-20 Review

1. Write a function

 NODE *MiddleNode(NODE *head);

that returns a pointer to the middle node of a linked list. Try to write your
function using only one loop.

2.� Write a function

 void SplitOddEven(NODE *head,
 NODE* &head1, NODE* &head2);

that takes a linked list pointed to by head and splits it into two new linked lists
pointed to by head1 and head2. The function should place the first and every
odd node into the first list and the second and every even node into the second
list. Your function must not allocate new nodes or move the data elements
between nodes.

3. A doubly linked list structure is defined as follows:

struct NODE {
 apstring info;
 NODE *prev;
 NODE *next;
};

struct LIST {
 NODE *head;
 NODE *tail;
};

Write a function

 bool SingleNode(const LIST &list);

that returns true if the list has exactly one node, false otherwise.

98 CHAPTERS 17-20 REVIEW

4. Explain why an implementation of stack as a linked list with a tail, where the
push function appends an item at the end of the list, is not very efficient:

A) Needs twice as much memory
B) Takes a long time to find the place to attach the new node in push
C) Takes a long time to find the top stack item in pop
D) Takes a long time to adjust head or tail in push
E) Takes a long time to adjust head or tail in pop

5.�� A book’s index contains entries and sub-entries nested to several levels. Sub-

entries are indicated by deeper indentation. All sub-entries of a given entry are
preceded by the same number of spaces; that number is greater than the
indentation at the previous level. For example:

class
 accessors
 constructors and destructors
 overloaded
 with arguments
 defined
 polymorphism
function
 inline
 static
stack class
 for handling nested structures
 member functions
 push
 pop

Write a program that reads a specified index file and verifies that all the entries
and subentries are in alphabetical order. To keep things simpler, assume that all
entries are in lowercase letters. Use the apstring class and relational operators
to read the index entry lines from a file and compare strings. Define an ENTRY
structure that can hold the current indentation offset and the index entry text. Use
a stack of index entries.

 CHAPTERS 17-20 REVIEW 99

6.�� Write a program, in which Cookie Monster finds the optimal path from the upper
left corner (0,0) to the lower right corner (SIZE-1, SIZE-1) in a cookie grid (a 2-D
array). The elements of the grid contain cookies (a non-negative number) or
barrels (-1). On each step Cookie Monster can only go down or to the right. He
is not allowed to step on barrels. The optimal path contains the largest number of
cookies.

The program prompts the user for a file name, reads the cookie grid from the file,
and reports the number of cookies on the optimal path.

Hints: If there is only one way to proceed from the current position, then go there
and update the total accumulated number of cookies. If there are two ways to
proceed, save one of the possible two points (and its total) on stack and proceed to
the other point. If you have reached the lower right corner, update the maximum.
If there is nowhere to go, examine the stack: pop a saved point, if any, and resume
from there.

Note: A similar method can be used to traverse any directed graph (a diagram of
nodes connected with arrows) that does not have circular paths. For example, one
application of such a method is to find the shortest route from point A to point B
on a road map. From any point we can take one route and leave all other possible
routes on stack for future processing.

7.�� Rewrite the Cookie Monster program above using recursion. For recursive

handling, it often helps to restate the question in more general terms. Here we
need to refer to the optimal path from (0,0) to any position (row, col). So our
OptimalPath(…) function should now take two arguments: row and col. Note
that the maximum number of cookies accumulated at a position (row, col) is
related to the previous positions as follows:

 OptimalPath(row, col) = cookies[row][col] +
 the larger of the two:
 {OptimalPath(row–1,col), OptimalPath(row, col–1)}

The only problem is invalid positions: either out of bounds or “barrels.” How can
we define OptimalPath(row,col) for an invalid position (row, col), so that
the above formula still works? Identify the base case(s) and recursive case(s).

8.�� Rewrite the GCF function, which finds the greatest common factor of two

positive integers (as described in Chapter 9), recursively.

100 CHAPTERS 17-20 REVIEW

9.�� A 6 by 6 gameboard contains arbitrarily arranged black and white squares. A path
across this board may use only black squares and may move only down or to the
right. Write and test a program that reads a board configuration from a file
(stored by rows) and finds and prints out all paths leading from the upper left
corner (0,0) to the lower right corner (5,5). Use queues to hold the points on the
incomplete paths.

10.� Given the definition:

struct STUDENT {
 apstring name;
 double GPA;
};

write and test a function

 void CutAtGPA(apqueue<STUDENT> &studentList,
 double minGPA, apqueue<STUDENT> &honorsList);

that removes student records one by one from the studentList queue, and adds
those students whose GPA is not less than minGPA to the honorsList queue.

11. (a) Add a constructor to the apqueue class:

 apqueue<itemType>::apqueue(int size);

that builds a queue with a buffer capable of holding size items and makes it
initially empty.

(b) Add a member function:

 bool apqueue<itemType>::isFull()

that returns true if the queue buffer is full and no new items may be placed into
it without reallocating the buffer of a larger size.

(c) Modify the enqueue(…) function so that it does not adjust the buffer size
automatically when the queue buffer is full.

12.�� Re-implement the apqueue class using a linked list with a tail and test the new

class.

101

Chapter 21. Classes: More Advanced Features

1. Name three major canonical features of a class:

Name a mechanism in the implementation of a class SOMECLASS that supports the
following usage:

2.

SOMECLASS a;
...
SOMECLASS b = a; ____________________________________

3.

SOMECLASS a, b;
...
b = a; ____________________________________

4.

SOMECLASS a;
...
cout << a; ____________________________________

5.

OTHERTYPE a;
...
SOMECLASS b = a; ____________________________________

Mark true or false:

6. friend declarations may appear anywhere within a class definition. ______
7. If class A is a friend of class B, then B is always a friend of A. ______
8. An iterator is a companion class that supports traversals for a list class. ______
9. An iterator class is usually declared to be a friend of the class on which it

iterates. ______

102 CHAPTER 21 ~ CLASSES: MORE ADVANCED FEATURES

10.�� Take the apqueue class and define a friend iterator class qiterator. Use the
qiterator class to write a function

void PrintHiPriority(const apqueue<MESSAGE> &q, int threshold);

that scans through a queue of messages q and prints the text of all messages
whose priority is equal to or above threshold. MESSAGE is defined as:

 struct MESSAGE {
 apstring mText;
 int mPriority;
 };

Mark true or false:

11. A static member of a class occupies the same memory location for all instances of

a class. _______
12. A static member function can access only public members of its class. _______
13. A static member function can be called through any instance of its class. _______
14. A static data member can be initialized within the definition of the class.

Given the class definition

class MyClass {

 private:
 static int offset;
 ...
 public:
 static int GetOffset(){return offset;}
 ...
};

which of the following are allowed usages?

15. int x = offset;
16. int x = MyClass::offset;
17. int x = GetOffset();
18. int x = MyClass::GetOffset();
19. MyClass mc; int x = mc.GetOffset();

103

Chapter 22. Trees

1. Define the following “tree” terms:

root ___

child ___

leaf ___

parent ___

ancestor ___

depth ___

2.� What is the smallest number of levels required to store 100,000 nodes in a binary

tree?

3.� What is the smallest and the largest possible number of leaves in a binary tree

containing exactly six non-leaf nodes?

4.� Prove using mathematical induction that a binary tree of depth h cannot have

more than 2h–1 nodes.

5.� Prove using mathematical induction that in a binary tree with N nodes
 L N

≤
+1
2

where L is the number of leaves.

Questions 6-12 use the following structure for a node of a binary tree:

struct NODE {
 int data;
 NODE *left;
 NODE *right;
};

6. Write a function

 bool IsLeaf(NODE *node);

 that returns true if node is a leaf.

104 CHAPTER 22 ~ TREES

7. Write a function

 int SumTree(NODE *root);

that returns the sum of the values stored in the tree pointed to by root.

8. What does the following function count?

long NumberOfSomething(NODE *root)

{
 long count;

 if (!root) return 0;
 if (!root–>left && !root–>right)
 count = 1;
 else
 count = NumberOfSomething(root–>left) +
 NumberOfSomething(root–>right);
 return count;
}

9. Write a function

 NODE *Copy(NODE *root);

that creates a copy of a given binary tree and returns a pointer to its root. Assume
that there is enough memory to allocate all the nodes in the new tree.

10. Write a function

 int Depth(NODE *root);

that returns the depth of the binary tree.

11.� Write a function

 NODE *MirrorImage(NODE *root);

that creates a mirror image of a given binary tree and returns a pointer to its root.
Assume that there is enough memory to allocate all the new nodes.

12.� Write a function

 long CountPaths(NODE *root);

that returns the total number of paths that lead from the root to any other node of
the binary tree.

 CHAPTER 22 ~ TREES 105

13.�� (a) Write a function

 NODE *BuildFull(int depth);

that builds a binary tree of the given depth with all levels completely filled with
nodes. The function should set the values in all the nodes to zero and return a
pointer to the root of the new tree.

(b) Write and test a function

 void FillTree(NODE *root);

that appends new nodes (with 0 values) to the tree until all existing levels in the
tree are completely filled.

Mark true or false:

14. The smallest element in a binary search tree is always a leaf. ______
15. If a binary search tree holds integers and the root holds 0, then all the nodes of the

left subtree hold negative numbers. ______
16. If a binary search tree is traversed inorder, all the nodes will be listed in

ascending order. ______
17. The iterative version of the Find(…) function that searches a binary search tree

may be as short as the recursive version. ______
18. The number of comparisons necessary to find a target node in a binary search tree

never exceeds log2n + 1, where n is the number of nodes. ______

19. Swap two nodes in the tree below to make it a binary search tree:

 5
 / \
 / \
 6 8
 / \ /
 0 4 3

20. Suppose we start with an empty binary search tree and add elements

 475, 474, 749, 623, 292, 557, 681

(in that order). Draw the resulting tree. How can we arrange the same numbers
in a balanced binary search tree?

106 CHAPTER 22 ~ TREES

21. Write a non-recursive function that returns the value of the largest element in a
non-empty binary search tree.

22. Draw the binary search tree created by inserting the letters

 L O G A R I T H M

(in that order) into an empty tree. List the nodes of this tree when it is traversed:

inorder __________________________

preorder __________________________

postorder __________________________

107

Chapter 23. Expression Trees

Draw expression trees for the following expressions. For unary operators, represent
the operand as the left child of the node that contains the operator.

1. 100a + 10b + c

2. (a + bi)(a–bi)

3. 2 / (1/x+1/y)

4. !((whitespace || digit) && lowercase)

5.� yr % 4 == 0 && (yr % 100 != 0 || yr % 400 == 0)

Choose the appropriate word:

6. The process of converting a textual representation of an expression into a

structured form (e.g., an expression tree) is called ________________ (evaluation
/ parsing / compilation).

7. In an expression tree, operands are represented by (names / parents / leaves).
8. __________________ (Stack / Recursion / Traversal) is the easiest way to

evaluate an expression represented by an expression tree.
9. Conventional algebraic notation is called _____________________ (prefix / infix

/ postfix) notation.
10. RPN is another name for __________________ (prefix / infix / postfix) notation.

Mark true or false:

11. The order of operands in prefix, postfix, and infix notations of the same

expression is the same. ______
12. The last token in the postfix notation of an expression that contains binary

operations must be an operation sign. ______
13. To convert an expression from postfix to prefix notation, you have to write the

operands in the same order and the operation signs in reverse order. ______
14. Inorder traversal of an expression tree generates the expression in infix notation.

15. Postfix expressions are convenient because they do not need any parentheses and

can be evaluated with no regard to the precedence of operators. ______

108 CHAPTER 23 ~ EXPRESSION TREES

Evaluate the following expressions in prefix, postfix and infix notations:

16. 7 * (1 – 9) + (3 – 4) __________________

17. 2 5 3 – * 3 + __________________

18. + + + + + 1 1 2 3 5 8 __________________

19.� !(true || (false && !true)) __________________

20.�� Write and test a function

 void PrintExpression(NODE *root);

that prints a parenthesized expression from the binary expression tree pointed to
by root. Assume that operands and operators are represented by apstring
tokens:

 struct NODE {
 apstring token;
 NODE *left;
 NODE *right;
 };

For unary operators, the operand is in the left child and there is no right child.

109

Chapter 24. Heaps

Mark true or false:

1. A heap structure can help implement a priority queue. ______
2. A heap is a kind of binary search tree. ______
3. The most economical implementation of a heap is a linked binary tree with

pointers from each node to its parent. ______
4. A full binary tree of depth h has 2h–1 nodes. ______

Questions 5-9 refer to a heap implemented as an array x, where x[1] corresponds
to the root of the heap. The heap contains N nodes.

5. What is the subscript for the parent of x[i]? _________________
6. What are the subscripts for the left and right children of x[i]?

7. Write a condition for i that determines whether x[i] is a leaf.

8.� Write an expression for the depth of the heap.

9.�� Write and test a function

 void TraverseInOrder(const apvector<int> &x, int N);

that would traverse inorder a heap of integers with N nodes and with the root in
x[1]. Hint: use a recursive helper function with a third argument.

111

Chapter 25. Analysis of Algorithms

Compare the order of growth of f(n) and g(n). Write “f = g”, “f < g” or “f > g”:

1. f n n g n n
n

() ()= =
+2 1 __________________

2. f n g nn n() ()= =10 102 __________________

3. f n n n n g n n() ()() ()=
+ +

=
1 2
6

2 __________________

4. f n n g n n() ! ()= =2 __________________

5. f n n g n n() ()= + =2 1 __________________

Mark true or false:

6. In comparing the order of growth, f = O(g) is like “f ≤ g” ______

7. We often informally say f = O(g) when we actually mean that the order of growth

of f and g is the same. ______

8. log2 n = O(log10 n). ______

9. 1 + 2 + ... + n = O(n2). ______

10.� (log2 n)2 = O(n). ______

11.� 1k + 2k + ... + nk = O(nk+1) for any positive integer k. ______

112 CHAPTER 25 ~ ANALYSIS OF ALGORITHMS

What is the big-O of the number of operations required to perform the following
tasks?

12. Transposing a square matrix of size n: __________________
13. Reversing an array of n elements: __________________
14. Removing the first element from a queue with n nodes: __________________
15. Removing the top element from a heap with n nodes: __________________
16. Finding the number of pairs of consecutive double letters in a character string of

length n: __________________
17. Traversing inorder a binary search tree with n nodes: __________________
18. Finding a node with a given value in a binary search tree with n nodes:

19.� Generating all the Beavis Island words (see Question 7 for Chapter 0) of length n:

20. What is Big-O of the order of operations, in terms of n, in the following function:

void LongToBin(unsigned long n, apvector<char> &binDigit)

// Converts unsigned long into an array of binary digits

{
 int i = 99;

 binDigit.resize(100);
 while (i >= 0 && n > 0) {
 if (n % 2) binDigit[i] = '1';
 else binDigit[i] = '0';
 i––;
 n /= 2;
 }
 while (i >= 0) {
 binDigit[i] = '0';
 i--;
 }
}

21.�� Look up the ftime(…) library function in the interactive help for your IDE.

Write a program that uses ftime(…) to obtain benchmarks for the sequential and
binary search algorithms. Take an array of n elements and initialize its values to
0, 1, ... , n-1. Run each type of search multiple times (e.g., 100,000 times) with a
target randomly chosen from the set of values. Call ftime before and after,
calculate the total elapsed time and the average search time, and tabulate your
benchmarks for a few values of n (e.g., n = 200, n = 100, n = 50, n = 25, n = 10).
Plot your benchmarks (average search time vs. n) for sequential and binary
searches. For which n does binary search outperform sequential search?

113

Chapters 22-25 Review

Questions 1-6 refer to the following tree T:

 Pascal
 / \
 / \
 C Lisp
 / \ / \
 Algol Cobol Fortran C++
 /
 Ada

1. What is the number of leaves in T? ______
2. What is the depth of T? ______
3. List the result of inorder traversal of T.

4. List the result of preorder traversal of T.

5. Swap two nodes in T to obtain a binary search tree (use alphabetical order,

reading C++ as “Cplusplus”).
6. Swap two nodes in T to obtain a heap.

7.�� Write and test a function

 NODE *BST(const apvector<int> &x);

that takes elements from an array x, pre-sorted in ascending order, builds a binary
search tree as close to being balanced as possible, and returns the pointer to the
root of the new tree. Can you come up with an algorithm that works in O(n) time,
where n is the size of the array?

114 CHAPTERS 22-25 REVIEW

Draw an expression tree that represents the following expressions, and convert each
of them into RPN (use the ~ symbol for the unary – sign).

8. (x+y)*(x–y)

__

9. (d + 31) % 7

__

10.� (–b + sqrt(b*b – 4*a*c)) / (2*a)

__

11.� !p || !(q1 && !q2)

__

12.� u >= v – 1 && u <= v + 1

__

13. In the usual representation of a complete binary tree in an array, does the array

 pq[8] = {0, 13, 8, 5, 3, 2, 1, 1};

represent a heap?

14.� A binary tree has five nodes containing 2, 3, 5, 7, and 11. In how many different

shapes can such a tree be a heap and a binary search tree at the same time?

15.�� Define a NODE structure and a LINKHEAP class that represent a heap as a linked

tree. Write and test the Insert and Remove functions. What is the Big-O
performance for these functions in terms of the number of nodes n in the heap?
(Hint: use recursive helper functions for the destructor and for Insert and
Remove.)

115

Chapter 26. Searching and Hashing

1. Describe the difference between searching and pattern recognition.

2. Describe a situation where the performance of a sequential search is better than

O(n).

3.� A divide-and-conquer method can be used to find a zero of a function. Suppose a

function f(x) is a continuous function on the interval [a, b]. Suppose f(a) < 0 and
f(b) > 0:

The graph of the function must cross the x-axis at some point. We can split the
segment into two halves and continue our search for a zero in the left or the right
half, depending on the value of f(x) in the middle point x = (a+b)/2.

Write a program that finds x (to the nearest .001), such that x = cos(x). (Hint:
consider the function f(x) = x - cos(x) on the interval [0, π/2].)

4. In Scrabble, different letters are assigned different numbers of points:

a - 1
b - 3
c - 3
d - 2

e - 1
f - 4
g - 2
h - 4

i - 1
j - 8
k - 5
l - 1

m - 3
n - 1
o - 1
p - 3

q - 10
r - 1
s - 1
t - 1

u - 1
v - 4
w - 4

x - 8
y - 4
z - 10

Write a function

 int Score(const apstring &word);

 that returns the score for a word without using either if or switch statements.

y = f(x)

a b

116 CHAPTER 26 ~ SEARCHING AND HASHING

5. Neural networks are non-linear statistical models that learn from experience; they
are used in pattern recognition systems. Neural network algorithms need to
calculate the “sigmoid” function over and over again:

y
e x=

+ −

1
1

Write a function

 void TabulateSigmoid(apvector<double> &s);

that tabulates the values of sigmoid for -10 ≤ x ≤ 10 (with steps of 0.01) and
places the values into the array s. Your function may call the library function
exp(x) declared in math.h.

Write and test a function

 double Sigmoid (double x, const apvector<double> &s);

that fetches and returns the sigmoid value for -10 ≤ x ≤ 10 from the table. The
function returns 0 if x < -10, and 1 if x > 10.

6. Define:

hashing ___

hash function ___

collisions ___

chaining ___

bucket ___

probing ___

clustering ___

-10 -8 -6 -4 -2
0

2 4 6 8 10 2

1

 CHAPTER 26 ~ SEARCHING AND HASHING 117

Mark true or false:

7. Access time in a lookup table of length n is O(n). ______
8. Probing is feasible only when the population of a hash table is relatively sparse.

9. Access time in a hash table is never greater than O(n), where n is the size of the

table. ______
10. It is easy to traverse a hash table in ascending order of keys. ______
11. The advantage of hash tables over binary search trees is the faster access time for

adding and removing data elements. ______

12.�� A hash table has sixty entries. Devise and test a hash function for English words

such that all the different words from this paragraph are hashed into the table with
no more than four collisions.

119

Chapter 27. Sorting

Mark true or false:

1. If the original array was already sorted, 190 comparisons would be performed in a

selection sort of an array containing 20 elements. ______
2. When insertion sort is applied to a singly linked list, the best case (that requires

the smallest number of comparisons) is when the list is already sorted. ______
3. The mergesort procedure is more suitable for use with linked lists than with

arrays. ______
4. Quicksort is sensitive to data; the performance is O(n log n) only if most splits

divide the array into two halves that are approximately equal in size. ______
5. Quicksort requires an auxiliary array that is as large as the original array. ______

Complete each sentence with the word always, sometimes, or never:

6. Selection sort in an array of n elements _________________ works in O(n2) time.
7. Bubble sort in an array of n elements _________________ works in O(n) time.
8. Insertion sort _________________ works faster than quicksort.
9. The mergesort algorithm is _________________ implemented in C++ as a class.

10. An array of six integers — 6, 9, 74, 10, 22, 81 — is being sorted in ascending

order. Show the state of the array after one pass through the array for each of the
following methods:

a) bubble sort ___________________________

b) selection sort (largest element) ___________________________

c) insertion sort (insert from the beginning) ___________________________

11.�� Write and test a program that merges two sorted files, with about n records in

each, into one sorted file. Your program should work with O(1) space and in
O(n) time.

12.� What is the state of an array after the “split” phase of the quicksort algorithm is

applied at the top level of recursion, if its initial values are

 a[9] = {6, 9, 74, 10, 22, 81, 2, 11, 54};

and the middle element is chosen as a pivot?

121

Chapter 28. Inheritance

Mark true or false:

1. A derived class always inherits all the data members and member functions of its

base class. ______
2. The base class has to be defined (or #include'ed) above the derived class.

3. The base class is a member of the derived class. ______
4. A derived class is a friend of the base class. ______
5. In object-oriented design, inheritance represents a relationship of a part to a

whole. ______

Complete each sentence with the word always, sometimes, or never:

6. A private member of a base class is ____________________________ private in

the derived class.
7. Private and protected members of a base class __________________________

change their access properties in a derived class.
8. Public members of a base class __________________________ remain public in

a publicly derived class.
9. A derived class _________________________ redefines member functions of its

base class.
10. The constructor for a derived class _________________________ executes the

constructor for the base class before entering its own code.

11.�� Write and test a class mystack<itemType> by deriving it from the apvector

class. Add the mSp data element. The mystack constructor mystack(int n)
must use an initializer list to call the base class constructor with the same
argument. It should also set mSp to 0. Redefine the length() member function
to return the current number of elements on the stack. Add

 void push(const itemType &item);

and
 void pop(itemType &item);

member functions.

122 CHAPTER 28 ~ INHERITANCE

Mark true or false:

12. A base class pointer can point to an object of the derived class. ______
13. A derived class pointer can point to an object of the base class. ______
14. In OOP it is good practice to derive classes that represent various specialized

objects of a certain category from one abstract class. ______
15. Polymorphism allows the pointer of the base class to call a member function of

the derived class. ______
16. A member function that has polymorphic behavior must be declared virtual.

17. A class with one or more pure virtual member functions is called an abstract

class. ______

123

�� Projects

1. (1-D arrays)

A signal from an EKG monitor is digitized at the rate of 100 samples per second
and stored in an array of amplitudes. Each heartbeat produces a spike in the
amplitude of the signal that exceeds the mean value of other amplitudes within
some surrounding window by at least a factor of 5. The window is defined by
taking d amplitudes on each side of the spike. Write a function

 int Pulse(const apvector<double> &ekg, int d);

that analyzes 15 seconds worth of digitized EKG and returns an estimated average
pulse rate (heartbeats per minute). Your function will be used in a real-time
patient monitoring system, so it has to be efficient. Do not use any nested loops
or auxiliary arrays.

2. (2-D arrays)

A magic square is a square of size n that holds consecutive numbers from 1 to n2,
so that the sum of the numbers in each row, in each column, and in each of the
two diagonals is the same. This is a magic square of size 3:

8 1 6
3 5 7
4 9 2

There is a simple method for generating a magic square when its size is an odd
number. We place 1 in the middle of the top row and then shift diagonally: up and
to the right, to place the next number. If we get out of bounds above the top row,
we “wrap around” and continue with the corresponding cell in the bottom row.
Likewise, if we get out of bounds on the right, we wrap around and continue with
the corresponding cell in the left column. If the next cell is already filled, we
instead shift down by one cell from the current cell.

Write a program that prompts the user for an odd integer n greater than or equal to
3 (but less than 20), validates the input, and prints out a magic square of size n.

124 �� PROJECTS

3. (Dynamic programming technique)

The Number Cruncher drives along Interstate 911 crunching numbers placed
every 10 yards along each lane. He may change lanes once after crunching a
number. Given the table of numbers placed along the lanes, find the maximum
possible total of the numbers he can crunch between Boston and Los Angeles.

In other words, the first k rows and n columns in a 2-D array are filled with
numbers. Write a function

 int OptimalPathTotal(apmatrix<int> &matrix);

that finds the maximum possible total of numbers along a path that starts in the
first column and ends in the last column. The path crosses each column once and
when we go from a column to the next, the path may only stay in the same row or
go to the row immediately above or below it. For example:

 1 3 2 2 3

 4 1 1 2 4
 \ /
 2 1 1 3 1
 \ /
 2 2 4 1 2

The optimal sum is 4+1+4+3+4 = 16. (Hint: your function is allowed to modify
the original array.)

 �� PROJECTS 125

4. (2-D arrays)

Write a program that traces the contour of a blob in an image. A black and white
image can be represented as a 2-D array of bytes with 0 representing white, 1—
black. A blob is a connected set of black pixels. Two pixels are considered
connected if their sides or corners touch. Assume that the image contains only
one blob. In the example below, 0's are shown as dots and 1's as 'x' for better
readability:

................
...xxxxxxx......
..xxxx.x........
..xxxxxx........
...xxx..x..x....
........xxxx....

The TraceContour(…)function finds the topmost black pixel in the blob and,
starting at that point, traces the outer contour counterclockwise, saving the x-y
coordinates of contour points. In narrow spots the same point may be traced
twice if it is traversed in two opposite directions. For example, the above image
has 26 points in the blob’s outer contour. If (0,0) is the upper left corner, they are:

(3,1), (2,2), (2,3), (3,4), (4,4), (5,4), (6,3), (7,3),
(8,4), (8,5), (9,5), (10,5), (11,5), (11,4), (10,5), (9,5),
(8,4), (7,3), (7,2), (8,1), (9,1), (8,1), (7,1), (6,1),
(5,1), (4,1).

The function may save contour points in an array or a linked list of x-y
coordinates and return the number of contour points. It should run in O(n) time,
where n is the number of contour points.

5. (Monte Carlo methods)

Write a program that uses a Monte Carlo simulation to estimate the probability of
getting a blackjack on three cards pulled randomly out of a deck of 52 cards. A
blackjack is a combination of cards totaling 21 points. An ace counts as either 1
or 11 points (player's choice); a king, queen, and jack score 10 points each; all
other cards (10-2) score the face value of the card.

6. (Strings)

Compile a small dictionary of two dozen words in a file and write a toy
spellchecker that loads the dictionary file into an array of strings, then prompts
the user to type in a word and verifies that it is in the dictionary or displays the
closest candidates with the corrected spelling. Your spellchecker should catch
words with a missing letter, a letter substitution, or two letters reversed.

126 �� PROJECTS

7. (Strings)

In the Madlibs party game, the leader has the text of a short story with a few
missing words in it. The missing words are tagged by their function: [noun],
[verb], [place], etc. For example:

It was a [adjective] summer day.
Jack was sitting in a [place].

The leader examines the text and prompts the players for the missing words:

Please give me an/a:
adjective
place
...

He then reads the text with the supplied words inserted into their places.

Write a program that acts as the Madlibs leader. It should prompt the user for a
file name (or display a menu of available files), read the text from the chosen file,
find the tags for the missing words (in square brackets), prompt the user for the
words, and, finally, display the completed text.

8. (Linked lists)

Write a program that reads a text file and appends each word, together with the
line number on which it occurs, to a linked list. Use a linked list with a tail.
Assume that a word is any sequence of letters and that words do not split between
lines. Skip all other characters. Convert all words to lower case. Sort the list
using radix sort and print the alpabetized “index”: a word, followed by the list of
all line numbers on which it occurs. (Do not repeat the same words or the same
line numbers in the printout.)

 �� PROJECTS 127

9. (Recursion)

A directed graph is a diagram of N points connected by arrows (two points may
be connected by more than one arrow). It is convenient to represent a directed
graph as an N by N array (called connectivity matrix) g, in which g[i][j] is the
number of arrows that go directly from point i to point j. For example:

 0 1 0
 g: 1 0 2
 0 0 0

Assume that the graph does not have circular paths. Write and test a (recursive)
function:

bool HasPath(const apmatrix<int> &g, int i, int j)

// g is the connectivity matrix of a directed graph:
// g[i][j] is the number of arrows going from point i to point j
// (0 <= i,j < N).
// The graph does not have circular paths.
// Returns true if there is a continuous path (along arrows)
// from node i to node j, false otherwise.

{
 ...
}

10. (Data representation and recursion)

Define a class TicTacToe that helps a computer program to play the game. The
class should represent the current position, who plays x's and who plays o's, and
whose turn it is to play. It should provide member functions to announce the
computer's moves and to process the opponent's moves. It should also have a
private member function that determines whether the current position is a winning
position for the computer or its opponent or a tie, and another (recursive) member
function that determines the computer’s best move by analyzing the consequences
of all possible responses. Write a program that plays Tic-Tac-Toe with the user.

 0

 2

 1

128 �� PROJECTS

11. (Data representation and recursion)

Write a program that solves the “IQ” puzzle. 14 pegs are arranged on a triangular
board (with one empty hole):

 x
 x x
 x x x
 x x x x
 x x o x x

In a valid move, a peg jumps over a neighboring peg into and empty slot, and the
jumped-over peg is removed. The objective is to have only one peg left after
thirteen moves.

12. (Data representation, bit-wise logical operators, permutations)

A physics lab has six weights: they weigh 1, 2, 3, 4, 5, and 6 grams, and all look
alike. The technician's daughter has been playing with the weights and might
have switched the labels around. Design a test consisting of two weighings on a
balance scale (with no other weights) that would determine whether any labels
have been switched. Each weighing establishes which of the balance plates is
heavier or confirms that the total weights on both sides are equal. (This problem
has two solutions, one of which is rather hard to find without a computer.)

 �� PROJECTS 129

13. (Trees)

The nodes of a binary tree are implemented as:

struct NODE {
 int value;
 NODE *left;
 NODE *right;
};

(a) Write a function

 NODE *NodeCountTree(NODE *root);

that takes a binary tree pointed to by root and builds a new tree. The shape of
the new tree is exactly the same as the shape of the original tree, but the values in
its nodes are different: in the new tree the value in each node is equal to the total
number of nodes in the subtree rooted at that node. (For example, the value at the
root is equal to the total number of nodes in the tree.) The function returns the
pointer to the root of the new tree.

(b) Suppose you have a binary search tree (BST) and a companion “node count”
tree (NCT) as described in (a). Write an efficient function

 int Median(NODE *bst_root, NODE *nct_root);

that finds the median of the values stored in the BST in O(log n) time (where n is
the number of nodes in the tree).

Hints: (1) The median is the (n/2)-th value in the tree, in ascending order.
Paradoxically, it is easier to write a more general function that finds the k-th value
in the tree for any k. (2) Using either iterations or recursion, build parallel paths in
the BST and the NCT from the root to the node you are looking for.

130 �� PROJECTS

14. (Expression trees)

C++ has bit-wise logical operators & (and) and | (or) for Boolean operations on
individual bits (see Appendix A in the textbook). & takes precedence over |. i86
assembly language has instructions and and or that correspond to these C++
operators. For example, the C++ statement

 byte3 = byte1 & byte2;

could generate the following assembly language code:

 mov ax,byte1 ; move byte1 into the register ax
 and ax,byte2 ; "and" ax and byte2, put result in ax
 mov byte3,ax ; move ax into byte3

The microprocessor has general-purpose registers ax and bx that can be used in
and and or instructions with the second operand coming from memory (from a
variable). It also supports a hardware stack with the push and pop instructions.
For example:

 push ax
 pop ax

Write and test a function that parses a C++ assignment statement

 Name = Expr;

generates assembly-language code for that statement, and writes it to a file. Expr
is a string of characters that contains only names of variables, parentheses, and &
and | operators.

15. (Bit-wise logical operators)

Write a program that plays the Nim game defined in Question 42 for Chapter 1.

131

Answers and Solutions

Chapter 1

11. H 12. S 13. 8, 256 15. 4096 16. 4Gb 17. 40 20. 47, hex 2F 22. 193, hex C1
24. 245, hex F5 26. 3851, hex 0F0B 28. 65280, hex FF00
30.
 (a) 'A' 65, hex 41, 01000001 (b) 00100000, hex 20
 'a' 97, hex 61, 01100001
 'Q' 81, hex 51, 01010001
 'q' 113, hex 71, 01110001

33. −2 34. See part1\dict.dat 37. For example: 'x' = 11, 'o' = 10, blank = 00.
 Each square needs 2 bits; 9 squares need 18 bits = 2.25 bytes. Yes.
38. 4 bits * 512 * 512 = 128K 39. mask: hex F8, stat. register: hex B0
40. (a) hex 19; (b) hex 03
41.
 base 3 dec add 1
 21 02 10 7 2 3 8 3 4
 00 11 22 ==> 0 4 8 ==> 1 5 9
 12 20 01 5 6 1 6 7 2

42.
 1: 001 This is a “plus” position, because the count of 1's
 3: 011 in each column is even. The second player wins.
 5: 101
 7: 111

 First takes 5 from 7: Second should take all from 5:
 1: 001 001
 3: 011 011
 5: 101 000
 7: 010 010

Chapter 2

2. F 5. F 7. F 8. F 9. int, return
10.

 cout << firstName
 << ", congratulations on your first program!\n";

19. style 23. F 25. F 26. T 27. sometimes 28. never 29. sometimes
 (e.g., in the Dictionary program, after struct ENTRY.)
30. sometimes (may come from a file). 32. compilation 33. read by
34. LoadDictionary(…) function 35. 2 43. valid 45. valid 47. valid 48. F (>> is the operator).
49. T 51. F (could go to a file) 52. D 54. E, A
56. Missing semicolon after iMin = i. Should return iMin.

132 ANSWERS AND SOLUTIONS

Chapter 3

2. 0 5. invalid 7. valid 9. 98 11. valid 12. valid 14. invalid 17. F 20. T 21. F
24. int temp should be double temp.

Chapter 4

3. 0 6. 5 7. -5
8.

 cout << "Seconds in a year = "
 << double(hours) * mins * secs * days << endl;

9.

 // 1./2 instead of 1/2:
 cout << "The travel distance is " << 1. / 2 * (g * t * t) << endl;

13. 3455 14. F (b has been incremented) 17. F (e.g., a = 6) 18. int(x+.5)

Chapter 5

3. T 4. F 7. valid 10. valid
12.

 apmatrix<int> chart(10, 4);
14.

 ...
 // Repeat as long as i is less than 16:
 while (i < 16) ...

Chapters 1-5 Review

3. sometimes 4. sometimes 5. sometimes 6. Yes (1 bit for size, 5 bits for toppings) 8. T
11. T 13. invalid 16. invalid 18. invalid
20.

4 mi = 4 km
22.

c = 0
25. 8

Chapter 6

2.

bool isdigit(char d)
{
 return d >= '0' && d <= '9';
}

4.
 ...
 // halfHour = (mins % 30 == 0);
 halfHour = (mins % 60 == 30);

 ANSWERS AND SOLUTIONS 133

6.
 bool inside = (x >= left && x <= right && y >= top && y <= bottom);

8.

 if (pixels[row][col] != pixels[row][col+1])
 count++;

9.
 if ((x + 2 > a || x – 2 < b) && y >= 0)

14. Only (d)

Chapter 7

1. 200 2. 246 3. D (count += 0.1 does not change count because it is int.)
7.

 int i, n = v.length();
 for (i = 0; i < n; i++)
 v[i] = i+1;

8.
 ...
 i = 1; // Not i = 0;
 while (i < 6) ...

9. 3 1 4 1 12. Leading zeroes

Chapter 8

2.

const int daysInMonth[12] = {31,28,31,30,31,30,31,31,30,31,30,31};
days = daysInMonth[month–1];

3. D

Chapters 6-8 Review

1. Only (c)
6.

 int i = 1;
 w.resize(n + n – 1);

 while (i <= n) {
 w[i–1] = i;
 w[2*n–1–i] = i;
 i++;
 }

134 ANSWERS AND SOLUTIONS

Chapter 9

6.

bool IsPerfectSquare(int n)
{
 int p, sum = 0;
 for (p = 1; sum < n; p += 2)
 sum += p;
 return (sum == n);
}

8.

void SwapPosNeg(apvector<double> &v)
{
 int size = v.length(), i = 0, j = size – 1;
 double temp;

 while (i < j) {
 if (v[i] < 0)
 i++;
 else if (v[j] >= 0)
 j––;
 else { // if both out of place –– swap them
 temp = v[i]; v[i] = v[j]; v[j] = temp;
 i++;
 j––;
 }
 }
}

Chapter 10

Several solutions in this chapter rely on the function

int random(int n);

that returns a random integer between 0 and n-1. This function, if not already provided
in the standard library for your compiler, can be defined as:

int random(int n)
{
 return int(long(rand()) * n / (RAND_MAX + 1));
}

2.

#include <stdlib.h>

int TwoDice()
{
 return random(6) + random(6) + 2;
}

 ANSWERS AND SOLUTIONS 135

Chapter 11

5. F 6. T 8. invalid 9. invalid 11. valid 12. valid 14. 30
19.

void SquareComplex(double &a, double &b)
{
// a = a*a – b*b; // "a" changes before it has been used
// b = 2*a*b; // in the next line.
 double a2 = a*a – b*b;
 b = 2*a*b;
 a = a2;
}

Chapter 12

1. T 3. F (different data types) 4. Use "\\" to indicate single backslash.
5. No. strlwr(…) actually changes the string to lower case.
7. valid 9. invalid
11. name.length() is more efficient because the length of the string is stored
 with the string. strlen(name.c_str()) has to scan the string to find
 the terminating null.

Chapters 9-12 Review

3.

void InsertMiddle(apvector<double> &v, double x)
{
 int i, len = v.length();

 v.resize(len + 1);
 for (i = len; i > len/2; i––)
 v[i] = v[i–1];
 v[i] = x;
}

8. no 10. -73
14.

apstring SwapFirstLast(const apstring &name)
{
 int pos = name.find(' ');
 return name.substr(pos+1, name.length() – pos –1) +
 ", " +
 name.substr(0, pos);
}

Chapter 13

3. T 5. T
7.

 bk.chapters[2].title;
8.

 bk.chapters[bk.nChapters–1].nPages;
 bk.chapters[bk.nChapters–1].firstPageNo;

136 ANSWERS AND SOLUTIONS

11.
ostream &operator<< (ostream &outp, const BOOK &book)
{
 outp << book.title << ": " << book.nChapters << " chapters, "
 << book.nPages << " pp.";
 return outp;
}

Chapter 14

1. D 3. B 5. E 9. T 11. T 13. E

Chapter 15

1. T 3. T 5. F 7. sometimes 9. always
10. sometimes (the whole class definition may be in the source file)
12. sometimes 15. goes out of scope 17. change 19. style 20. style 22. style
24. A (getX(…) needs a prototype)
25.

void POINT::MoveTo(double ax, double ay)
{
 // double x, y; this extraneous declaration shields class members x,y.
 ...

27. E 29. T 31. F 37. sometimes

Chapter 16

2. T 3. T 5. F
7.

template <class ANYTYPE>
double Average(ANYTYPE a, ANYTYPE b)
{
 return (double(a) + double(b)) / 2;
}

11. Yes 12. No 13. Yes 14. No
17.

template <class COORD>
SEGMENT::Stretch3()
{
 COORD dx = x2 – x1; // COORD xMid = (x1 + x2)/2;
 x1 –= dx; // x1 = xMid + 3*(x1 – xMid);
 x2 += dx; // x2 = xMid + 3*(x2 – xMid);
 COORD dy = y2 – y1; // COORD yMid = (y1 + y2)/2;
 y1 –= dy; // y1 = yMid + 3*(y1 – yMid);
 y2 += dy; // y2 = yMid + 3*(y2 – yMid);
}

 ANSWERS AND SOLUTIONS 137

Chapters 13-16 Review

1. No 3. Yes 5. Yes
7.

#include <iostream.h>
#include <iomanip.h>
...
ostream &operator<< (ostream &outFile, const STUDENT &s)
{
 outFile.setf(ios::left, ios::adjustfield); // Left justify
 outFile << setw(40) << s.name;
 outFile.setf(ios::right, ios::adjustfield);
 outFile.setf(ios::fixed | ios::showpoint);
 outFile << setprecision(2) << setw(6) << s.GPA << endl;
 return outFile;
}

9. C
11.

void NastyMessage()

{
 cout <<
#ifdef HITDISK
 "Please send $25.00 to have the data on your hard drive restored"
#else
 "Thank you for using X-SELL by Ransom Software"
#endif
 << endl;
}

14. sometimes 16. sometimes
18.

int main()
{
 LADDER ld(30);
 cout << ld.Add();
 return 0;
}

138 ANSWERS AND SOLUTIONS

Chapter 17

1. F 3. T 5. T 6. 0, &node3, &node2
7.

void Rotate (NODE* &head)
{
 if (!head || !head–>next) return;

 // Save current head and adjust it
 NODE *temp = head;
 head = head–>next;

 // Find the last node:
 NODE *tail = head;
 while (tail–>next) tail = tail–>next;

 // Append saved node to tail
 tail–>next = temp;
 temp–>next = 0;
}

12.

int Sum(NODE *head)
{
 if (!head) return 0;
 int sum = head–>data;
 for (NODE *node = head–>next; node != head; node = node–>next)
 sum += node–>data;
 return sum;
}

Chapter 18

2. -1,-2,-6,3,7,4 3. C 4. Pop cursor.x, cursor.y in reverse order.

Chapter 19

1. D 2. D
4.

 ...
 // Base case: when the list is empty, the for loop is not entered
 for (NODE *node = picture; node; node = node–>next) {
 Draw(node–>elmt); // Draw the element
 DrawPicture(node–>subpicture); // Draw the subpicture
 }
 ...

5. MystSum(n) = n2 .
 Proof: MystSum(1) =1; If MystSum(n-1) = (n-1)2 then
 MystSum(n) = (n-1)2 + 2n -1 = n2 - 2n + 1 + 2n - 1 = n2.

 ANSWERS AND SOLUTIONS 139

6.
long CountPaths(int x, int y)
{
 if (x <= 0 || y <= 0)
 return 1;
 else
 return CountPaths(x–1, y) + CountPaths(x, y–1);
}

Chapter 20

2.

int RBQUEUE::Length()

{
 int len = rear – front;
 if (len < 0) len += BUFSIZE;
 return len;
}

3. Empty. Last 8 characters: d<SPACE>40:1a<CR>

Chapters 17-20 Review

1.

NODE *MiddleNode(NODE *head)
{
 bool skip = false;
 NODE *node, *midnode = head;

 for (node = head; node; node = node->next) {
 if (!skip)
 midnode = midnode->next;
 skip = !skip;
 }
 return midnode;
}

4. E
8.

int GCF (int m, int n)
{
 int r = m % n;
 if (r == 0) return n;
 return GCF(n, r);
}

Chapter 21

2. Copy constructor 3. Overloaded assignment operator
5. Constructor from compatible class 7. F 9. T 11. T 13. T 14. F
16. No (offset is a private member) 18. Yes

140 ANSWERS AND SOLUTIONS

Chapter 22

2. 17 3. 1, 7
4. Let N(h) be the max number of nodes for a binary tree of depth h.
 N(1) <= 21 - 1 = 1; N(h) <= 1 + N(h-1) + N(h-1) <= 1 + 2(2h-1 - 1) = 2h - 1
5. If root is a leaf, L = 1, N = 1, 1=(1+1)/2;
 L = Lleft+Lright <= (Nleft+1)/2 + (Nright+1)/2 = (Nleft+Nright+2)/2 = (N+1)/2
8. Leaves
11.

NODE *MirrorImage(NODE *root)
{
 if (!root) return 0;
 NODE *newroot = new NODE;
 newroot–>data = root–>data;
 newroot–>left = MirrorImage(root–>right);
 newroot–>right = MirrorImage(root–>left);
 return newroot;
}

14. F 16. T 17. T 18. F (e.g., a tree that degenerated into a list)
21.

int MaxElement(NODE *root)
{
 while (root–>right)
 root = root–>right;
 return root–>data;
}

Chapter 23

3.

 -:-
 / \
 2 +
 / \
 -:- -:-
 / \ / \
 1 x 1 y

4.

 !
 /
 &&
 / \
 || lowercase
 / \
 whitespace digit

7. leaves 8. recursion 10. postfix 12. T 14. T 17. 7 19. false

Chapter 24

2. F 4. T 7. 2*i>N 8. [log2N]+1

 ANSWERS AND SOLUTIONS 141

Chapter 25

2. f < g 4. f > g 5. f = g 7. T 9. T 11. T 14. O(1) 15. O(log n) 18. O(log n)
19. O(3n) 20. O(log n)

Chapters 22-25 Review

2. 4 4. Pascal C Algol Ada Cobol Lisp Fortran C++ 6. C and C++ or C and Cobol
10.

 -:-
 / \
 + *
 / \ / \
 - sqrt 2 a
 / /
 b -
 / \
 * *
 / \ / \
 b b * c
 / \
 4 a RPN: b ~ b b * 4 a c * * - sqrt + 2 a * /

12.

 &&
 / \
 >= <=
 / \ / \
 u - u +
 / \ / \
 v 1 v 1 RPN: u v 1 - >= u v 1 + <= &&

14. None

Chapter 26

2. The targets that are much more likely than others are placed at the beginning of the list
7. F 9. F (may have large buckets) 11. T

Chapter 27

1. T 3. F 5. F 7. sometimes 8. sometimes 9. sometimes
12. 6, 9, 11, 10, 2, 22, 81, 74, 54

Chapter 28

2. T 4. F 6. always 7. sometimes (in private inheritance) 9. sometimes

142 ANSWERS AND SOLUTIONS

11.
// Change "private" to "protected" in apvector.h

template <class itemType>
class mystack : public apvector<itemType> {

 public:
 mystack(int size) : apvector<itemType>(size), mSp(0) {}
 int length() {return mSp;}
 void push(const itemType &item) {
 if (mSp < mySize) myList[mSp++] = item;
 }
 void pop(itemType &item) {
 if (mSp > 0) item = myList[--mSp];
 }

 private:
 int mSp;
};

13. F 15. T 17. T

