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                                                                     Preface 
 
 
C++ is becoming the language of choice for introducing college students across the 
country to computer science and programming.  In high schools, the Advanced 
Placement* (AP) examination in Computer Science will be administered in C++ for 
the first time at the end of the 1998-99 academic year.  While Maria was teaching 
an experimental year-long AP computer science course in C++ in 1995-96, we 
both saw the need for a manageable and concise textbook that would cover 
programming, algorithms, and data structures in a style indigenous to C++.  
Maria's students at Phillips Academy embraced the opportunity to take the AP 
course in C++ (even though they had to switch to Pascal in the final weeks before 
the AP exam) and, with their support, C++ for You++ was born. 
 
We have designed this book for a two- or three-semester high school or college 
introductory course in programming and data structures, with the choice of topics 
guided by a typical first-year college course as described in the College Board's 
Advanced Placement curriculum.  Part 1 covers C++ programming (excluding 
classes), with the emphasis on effective programming practices and good style.  
Part 2 introduces C++ classes and covers the usual data structures as well as 
searching and sorting algorithms. 
 
This Special AP Edition introduces the five AP classes, apvector, apmatrix, 
apstring, apstack, and apqueue, and explains how to use them.  These classes were 
developed by the College Board's C++ AP Development Committee and are 
required for the APCS exam.  This book follows the Committee’s 
recommendations that students always use the apvector and apmatrix classes 
instead of built-in one- and two-dimensional arrays, and that the apstring class 
always be used instead of null-terminated strings.  The apstack and apqueue 

                                                      
*Advanced Placement is a registered trademark of the College Entrance Examination Board which is not 
responsible for the contents of this text. 

xv 
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classes provide standard implementations of the stack and queue data structures.  
Students who take the A- or AB- level AP exam are expected to know how to use 
the apvector, apmatrix, and apstring classes in programs.  Students who take the 
AB-level exam are also expected to use and re-implement the apstack and apqueue 
classes. 
 
Computer science is an applied discipline, not just a set of academic theories.  
Therefore, the main thrust of C++ for You++ is to teach students to write effective 
programs.  Combining our experience as a teacher and a professional software 
engineer, we have sought to include modern, realistic examples and present them 
in a format teachers and their students will find accessible.  Our labs and case 
studies aim to demonstrate the most appropriate uses of the programming 
techniques and data structures we cover. 
 
We assume that at least one or two classes each week will be spent in a computer 
lab with students working independently or in small groups.  The accompanying 
disk contains all the labs and case studies, and the teacher's edition disk provides 
complete solutions to all labs.  To simplify some of the lab exercises, teachers can 
share hints or fragments of code from their solution disk.  Meanwhile, “extra 
credit” tasks can make the lab exercises more challenging for more advanced 
students.  The book also proposes several independent programming projects that 
can stretch over a couple of weeks.  The Workbook to Accompany C++ for You++ 
provides many additional questions, exercises, and projects. 
 
C++ for You++ does not require prior knowledge of programming.  For beginners 
seeking a primer on C++ programming, our book includes many code fragments 
and “cookbook” recipes (in the text and on the accompanying disk) for writing 
reliable programs.  Our lab exercises ask students to modify or enhance existing 
code before having them write programs from scratch—a “training wheels” 
approach that turns out confident, competent programmers. 
 
For those already familiar with C++ (including structures, but not necessarily 
classes), Part 2 can serve as an independent introduction to data structures.  After a 
brief discussion of how to create modular programs, we introduce C++ classes and 
templates and learn how to implement and use them.  Then we begin a serious 
discussion of some software development topics and techniques not specific to 
C++ that are important to any computer programmer.  We discuss data structures 
(linked lists, stacks, queues, trees) and their uses, recursion, and common 
algorithms for searching, hashing, and sorting.  We also describe the apstack and 
apqueue classes and their use. 
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C++ for You++ seeks to accommodate different learning styles and aptitudes.  In 
general, we have tried to reveal the underlying concepts of C++, where possible, 
and emphasize the programming choices that have become part of the C++ culture.  
Straightforward “cookbook” examples are followed by more detailed explanations 
of how and why they work.  Throughout the book, less important technical details 
are grouped in sections that can be skipped on a first reading.  For instance, 
Chapter 10, “Monte Carlo Methods,” is optional; Chapter 11, “Pointers, 
References, Dynamic Memory Allocation,” can be skipped almost entirely (with 
the exception of Section 11.3, which explains how to pass arguments to functions 
by reference).  Some more advanced topics, in particular friends, iterators, static 
class members (Sections 21.6 - 21.8) and inheritance (Chapter 28) are not part of 
the AP subset required for the AP exam and can be skipped or covered partially, as 
time permits.  Stream input and output classes are summarized in more detail in an 
appendix.   
 
Without further delay, let us begin learning to program in C++! 

a a a 

Our sincere thanks to Doug Kuhlmann, the chairman of the Mathematics 
Department at Phillips Academy, for suggesting that Maria switch her Advanced 
Placement computer science course to C++ three years ahead of the national 
requirement; his support was most valuable in this effort.  We thank George Best 
for encouraging us to write this book.  Thanks to Bill Adams of Concord Academy 
and Kathy Larson of Kingston High School who read a preliminary draft of the 
book and suggested some important improvements.  We are very grateful to 
Deborah Roudebush of Potomac Falls High School for inspiring this AP Edition, 
encouragement, and help with converting programs from built-in arrays to 
apstring, apvector, and apmatrix classes.  And our special thanks to Margaret 
Litvin for her thoughtful and thorough editing. 

a a a 

The student files are available at http://www.skylit.com/cpp4ap/. 
 
Complete answers and solutions are available to teachers — for access please 
e-mail from your school email account to support@skylit.com.

 

http://www.skylit.com/cpp4ap/
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1.1 Discussion 
 
Spectacular achievements in computer technology in the past 50 years have 
reshaped our lives in many ways, and will continue to do so, to the delight of some 
and the chagrin of others.  The proliferation of computers has not only changed our 
everyday circumstances but has also profoundly affected the ways we think, speak, 
“process information,” learn, solve problems, and communicate.  At the same time, 
paradoxically, the fundamental principles underlying the design of digital 
computers have changed little since UNIVAC, the first “general-purpose, 
programmable, digital, stored-program” computer, was installed in the Bureau of 
the Census in 1951. 
 
A typical modern computer, like its ancient ancestors, is built around a CPU 
(Central Processing Unit) that reads “bits” of data from memory, performs 
calculations or logical operations, and writes the resulting data back into memory.  
A computer system also includes peripheral devices that provide input and output 
and secondary mass storage.  Only instead of the UNIVAC's CPU, which took up a 
cabinet the size of two vending machines and could perform 2000 additions or 450 
multiplications per second with its vacuum tubes, Intel's Pentium microprocessor 
has 3.1 million transistors etched into a square slice of silicon wafer smaller than 
three quarters of an inch wide.  It can run at over 300 MIPS (million instructions 
per second)  and includes a floating-point coprocessor on the same chip for doing 
real-number arithmetic.  Instead of UNIVAC's 1000 "words" of memory, a typical 
personal computer of the late 1990s has 8 to 64 "Megs of RAM" (Megabytes, i.e. 
millions of bytes, of Random-Access Memory) packed in a few SIMMs (Single 
In-Line Memory Modules).  And "peripheral" devices no longer seem quite so 
peripheral when a keyboard, a display, a hard drive, a floppy drive, a fax/modem, a 
trackball, a microphone, and a speaker can all be built into one "notebook" unit 
that weighs less than a hard-cover college textbook on computer architecture. 
 
By now the progress in computer hardware has been celebrated enough in colorful 
graphs and charts that grow (or decrease, when appropriate) exponentially.  The 
speed of microprocessors has been doubling roughly every two to three years since 
the introduction of Intel's 8086 microprocessor in 1978; the cost of one megabyte 
of RAM has halved at approximately the same rate. 
 
A computer is a universal programmable device.  It can model nearly any task that 
involves logical and arithmetic operations.  Of course, it will not know how to go 
about a particular task without the appropriate program.  But the idea that 
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computers should have “software” has not always been as obvious as it seems 
today.  UNIVAC's ancestor, ENIAC, developed in 1942-1946 primarily for 
military applications, was programmed by people actually connecting hundreds of 
wires to sockets — hardly a “software development” activity as we know it.  
(ENIAC occupied a huge room, had 18,000 vacuum tubes, could perform 300 
multiplications per second, and used more than 180 kilowatts of electricity.)  The 
breakthrough came in 1946 when John von Neumann (1903-1957), a brilliant 
mathematician working in Princeton’s Institute for Advanced Study, came up with 
and developed the idea that a computer program can actually be stored in the 
computer memory itself in the form of encoded CPU instructions, together with the 
data on which that program operates.  Hence the term “program-stored” computers.  
Virtually all modern computers are based on this von Neumann architecture. 
 
Digital program-stored computers quickly won out over their early competition, 
the analog computers.  Analog computers represented information as different 
shapes of continuous electrical signals.  They could solve differential equations 
and similar problems by transforming the shapes of the signals when they passed 
through analog electrical devices.  The “programmers” could rearrange the 
electrical components and connections, but “software” programming was 
impossible. 
 
By contrast, digital computers represent and handle all information in discrete 
binary bits: “on” or “off,” “high” or “low,” 1 or 0.  The information is stored in 
memory by switching between the two binary states of memory bits: each bit can 
be set to 1 or 0, “on” or “off.”  The CPU is essentially one very complex electrical 
circuit with many “digital” switches where one electrical current may switch 
another current on or off.  When chained together, such switches can emulate 
logical operations.  For example, a current A may be turned on only when current 
B and current C are both on.  A current D may be on if the current E is not on.  In 
modern microchips, the logical switches are microscopic semiconductor devices 
called transistors.  Von Neumann proved that all arithmetic operations can be 
reduced to three simple logical operations: “and,” “or,” and “not.” 
 
Von Neumann computers are inherently sequential: the CPU fetches and processes 
one instruction at a time.  Breathtaking progress in computer technology has left 
little time to seriously re-examine the basic “one CPU + memory” paradigm of 
computer architecture. Nevertheless, parallel computers and supercomputers with 
multiple CPUs have been built and used for time-critical applications.  SIMD 
(Single Instruction Multiple Data) machines work as array processors — the same 
CPU instruction is executed for many data elements at once.  MISD (Multiple 
Instructions Single Data) machines work as a pipeline (or a conveyer belt): each 
CPU performs one operation on a data element and passes it on to the next CPU in 
the pipeline.  These computers basically build on von Neumann architecture. 
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A few computer scientists are working on radically new computer architectures 
based on highly parallel computational models.  For example, in a data-driven 
computer architecture, operations can be performed asynchronously, in a highly 
parallel manner.  An operation is executed as soon as all its required operands 
“arrive,” and the result of the operation is passed on or broadcast concurrently to 
all the waiting operations that might need it.  Not long ago, a solution to a classical 
computer science problem too time-consuming for the fastest sequential computers 
was demonstrated in an experimental computation on a parallel “biocomputer.”  
The  solution was produced in the form of the mix of specific DNA molecules in a 
test tube. 
 
In the remaining sections of this chapter we will get familiar with common 
computer terms, make a brief overview of the computer hardware components, and 
discuss software environment and development tools.  We will also discuss how 
numbers and text are represented in computer memory. 
 

1.2 Hardware Overview 

1.2.1 The CPU 
 
The functionality of a CPU is characterized by its instruction set and internal 
registers.  The registers are specialized built-in memory cells that are used for 
holding operands, memory addresses, and intermediate results.  Some of the 
registers are accessible to the programmer.  The instruction set includes 
instructions for loading CPU registers from memory and storing their values into 
memory, for logical and arithmetic operations, and for altering the sequence of 
operations.  The CPU fetches the next instruction from memory, interprets its 
operation code, and performs the appropriate operation.  The instructions are 
executed in sequence unless a particular instruction tells the CPU to jump to 
another place in the program.  Conditional branching instructions tell the CPU to 
continue with the next instruction or to jump to another place depending on the 
result of the previous operation. 
 
Some CPUs can interpret hundreds of different instructions.  Another approach is 
used in  RISC (Reduced Instructions Set Chip) microprocessors, which have few 
basic instructions but can perform them very quickly.  Computers with RISC 
microprocessors implement more complex operations through combinations of 
basic instructions in software. 
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Every computer has an internal clock that generates electrical pulses at a fixed 
frequency.  All CPU operations and their component steps are synchronized with 
the clock’s pulses; their duration is measured in clock cycles.  The CPU’s speed 
depends on the frequency of the clock.  The Intel 8088 microprocessor in the 
original IBM Personal Computer, for example, ran at 4.77 MHz (megahertz, or 
million pulses per second).  Seventeen years and five generations later, Intel's 
Pentium microprocessors run at 200 MHz; some instructions have also been 
optimized to take fewer cycles. 
 
A microprocessor CPU connects to memory and other devices through a set of 
parallel lines controlled by digital electronics, called a bus.  A CPU may use a 
separate address bus for specifying memory addresses and a data bus for reading 
and writing memory values.  Besides the internal clock speed, the computer’s 
overall performance depends on the speed of the bus transfers and the width of the 
bus.  The 8086 microprocessor in the PC XT, for example, had a 16-bit bus, which 
means it could carry 16 bits of data concurrently from memory to the CPU.  It also 
used 16-bit CPU registers.  The Pentium has a 32-bit bus and 32-bit registers. 
 
In a personal computer, the CPU is mounted on a PC (Printed Circuit) board, 
called the motherboard, together with memory chips, the bus, and supporting 
electronics. 
 

1.2.2 Memory 
 
The computer memory can be viewed as a uniform linear array of bits for storing 
information.  Each bit can have a value of 0 or 1.  Most modern computers arrange 
bits in groups of eight, called bytes.  Each byte has a unique address that can be 
used in CPU instructions to fetch the value stored in the byte or write a new value 
into it.  A CPU does not have to read or write memory bytes sequentially: bytes 
can be accessed in any arbitrary sequence.  This is why computer memory is called 
random-access memory or RAM.  The size of RAM is measured in kilobytes (KB, 
or simply K) or megabytes (MB).  A kilobyte is 1024 (210) bytes; a megabyte is 
1024 x 1024 = 220 = 1,048,576 bytes. (Powers of 2 have a special significance in 
computer technology for a reason that will become clear shortly.) 
 
In the early days, designers of personal computers thought that 64K of RAM 
would be sufficient for the foreseeable future.  An additional hardware mechanism, 
the segment registers, had to be added to the later versions of Intel's 
microprocessors to address a larger memory space, up to 1MB, while maintaining 
compatibility with the old programs.  But  the 1MB limit very quickly proved to be 
inadequate too.  Eventually the Intel's 386 microprocessor came out with the 32-bit 
memory address bus, which allows programs to directly address four gigabytes 
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(GB) of memory.  One gigabyte is equal to 230 = 1,073,741,824 bytes.  This should 
suffice for a while, but no one knows how long.  (1 GB can hold roughly 250,000 
pages of a text like this one.)   
 
A small part of the computer memory is permanent non-erasable memory, known 
as read-only memory or ROM.  A personal computer’s ROM contains, among 
other things, the initialization code that boots up the operating system (that is, 
loads into memory the boot record or initialization code from the disk and passes 
control to it).  Any computer program has to be loaded into memory before it can 
run.  ROM solves the “first-program” dilemma — some program must already be 
in memory to load any other program into memory.  The operating system has the 
job of loading and executing other programs.  In a personal computer, ROM also 
contains the computer configuration program and hardware diagnostic programs 
that check various computer components. The ROM BIOS (Basic Input Output 
System) contains programs for controlling the keyboard, display, floppy disk 
drives, and other devices. 
 

1.2.3 Secondary Storage Devices 
 
A computer’s RAM has only limited space, and its contents are wiped out when 
the power is turned off.  All the programs and data in a computer system have to be 
stored in secondary mass storage.  The auxiliary storage devices include hard 
disks, floppy disk drives, tape drives, optical disks, and other devices.  Access to 
data on these devices is much slower than access to RAM.  An executable program 
has to be loaded from a disk, a floppy, or a tape into RAM before it can run.  When 
a program is running, it can read and write data directly to and from secondary 
storage devices. 
 
A hard or floppy disk has to be formatted by a special program before it can be 
used to store data.  The formatting program splits the disk into sectors by placing 
special sector delimiter marks on it.  The disk BIOS in ROM knows how to read or 
write a specified sector on a specified track and cylinder on the disk's magnetic 
surface under one of its read/write heads. 
 
There are also WORM (Write Once, Read Many [times]) devices, which are used 
for data archiving purposes.  CD-ROM (Compact Disk Read Only Memory) 
optical disks are used for publishing large programs and texts.  A CD-ROM can 
hold more than 600MB (or up to 2 or 3 GB with data compression). 
  
The operating system software organizes the data in secondary storage into files.  
A file may contain a related set of data, a program, a document, an image, and so 
on; it has a unique name.  The operating system maintains a directory of file 
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names, locations, sizes, date and time of the last update and other attributes.  Thus 
a “file” is a software rather than a hardware concept. 
 

1.2.4 Input and Output Devices 
 
A personal computer receives user input through the keyboard and displays the 
output on the computer screen.  In many programs the input is echoed on the 
screen as you type, creating the illusion that the keyboard is directly connected to 
the display.  In fact, these are two entirely different devices that are connected only 
indirectly through the CPU and the currently running program.  The keyboard 
sends  the program digital codes that represent the pressed keys.  The screen is 
controlled by a video adapter and displays the contents of special video memory in 
the adapter, called VRAM.  VRAM is addressable by the CPU and may contain 
codes, colors and attributes of characters (when running in the so-called “text” 
modes) or colors or intensities of individual pixels (“picture elements”) in graphics 
modes. 
 
A mainframe computer (a very large multi-user computer) may have hundreds of 
terminals attached to it. The terminals send keystrokes and receive commands and 
display codes from the computer via digital transmission lines. 
 
Printers, plotters, digitizing tablets, scanners and other devices receive commands 
and data from the computer in digital form and may send data or control codes 
back to the computer according to a specific communications protocol.  Network 
adapters and cables are used to connect several computers into a LAN (Local Area 
Network). 
 
Modems transmit digital information through telephone lines.  A sending modem 
encodes bits of information into a sequence of electrical pulses that emulate signals 
obtained from different acoustic tones in a telephone.  A receiving modem decodes 
the signal back into digital form.  A modem communicates to the computer 
through a serial port, which is a connector to a standard hardware interface 
between a computer and some peripheral device. 
 
Special data acquisition devices equipped with A/D (analog-to-digital) converters 
allow computers to convert an electrical signal into digital form by frequently 
sampling the amplitude of the signal and storing the digitized values in memory.  
D/A (digital-to-analog) converters perform the reverse transformation: they 
generate electrical currents from the digitized amplitudes stored in the computer.  
These devices allow the computer to receive data from instruments of all kinds and 
to serve as a universal control device in industrial applications and scientific 
experiments. 
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Input and output devices are connected to the computer via hardware interface 
modules that implement specific data transfer protocols.  In a personal computer, 
the interfaces may be built into the motherboard or take the form of special adapter 
cards that plug into the bus.  Devices connected to the computer are usually 
controlled by special programs called drivers that handle all the details and 
peculiarities of the device and the data transfer protocol. 
 

1.3 Representation of Information in 
Computer Memory 

 
Computer memory is a uniform array of bytes that does not privilege any particular 
type of information.  The memory may contain CPU instructions, numbers and text 
characters, and any other information that can be represented in digital form.  
Since a suitable A/D converter can more or less accurately convert any electrical 
signal to digital form, any information that can be carried over a wire can be 
represented in computer memory.  This includes sounds, images, motion, and so on 
(but, so far, excludes taste and smell). 
 
The CPU instructions are represented in the computer memory in a manner 
specific to each particular brand of CPU.  The first byte or two represent the 
operation code that identifies the instruction and the total number of bytes in that 
instruction; the following bytes may represent the values or memory addresses of 
the operands.  The representation of memory addresses depends on the CPU 
architecture, but they are basically numbers that indicate the absolute sequential 
number of the byte in memory.  The address of an instruction may be given in 
terms of the relative displacement from the current instruction.  A CPU may have 
special segment registers and index registers that help calculate the actual address 
in memory for a specified instruction or operand. 
  
The format for numbers is mostly dictated by the CPU, too, because the CPU has 
instructions for arithmetic operations that expect numbers to be represented in a 
certain way.  Characters (letters, digits, etc.) are represented using one of the 
several character code systems that have become standard not only for representing 
text inside computers but also in computer terminals, printers, and other devices.  
The code assigns each character a number, which usually takes one byte (but may 
take two bytes if the character set is very large as, for example, in Japanese 
computers). 
 



 CHAPTER 1 ~ INTRODUCTION TO HARDWARE AND SOFTWARE 11 

Fortunately, high-level programming languages such as C++ shield computer 
programmers from the intricacies of how to represent CPU instructions, memory 
addresses, numbers, and characters. 
 
Representing other types of information is often a matter of a specific application’s 
design.  A black and white image, for example, may be represented as a sequence 
of bytes where each bit represents a pixel of the image: 0 for white and 1 for black.  
The sequence of pixels typically goes from left to right along each horizontal line 
of the image and then from top to bottom by row. 
 

1.3.1 Numbers 
 
Integers from 0 to 255 can be represented in one byte using the binary (base-2) 
system as follows: 
 

Decimal        Binary 
 
   0          00000000 
   1          00000001 
   2          00000010 
   3          00000011 
   4          00000100 
   5          00000101 
   6          00000110 
   7          00000111 
   8          00001000 
 
 ...            ... 
 
 252          11111100 
 253          11111101 
 254          11111110 
 255          11111111 

 
If we use 2 bytes (16 bits), we can represent integers from 0 to 216–1 = 65535: 
 

Decimal             Binary 
 
    0          00000000 00000000 
    1          00000000 00000001 
    2          00000000 00000010 
  ...                 ... 
65534          11111111 11111110 
65535          11111111 11111111 
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In general, k bits can produce 2k different combinations of 0's and 1's.  k binary 
digits can represent non-negative integers in the range from 0 to 2k–1.  (A 16-bit 
memory address can identify 216 = 65536 different memory locations.  Therefore, 
if we want to be able to address each individual byte, 16-bit addresses cover 64K 
bytes of memory space.) 
 
CPUs perform all arithmetic operations on binary numbers.  A CPU may have 
instructions that perform 8-bit, 16-bit, or 32-bit arithmetic, for instance.  If the 
operand includes multiple bytes, the order of bytes in memory may depend on the 
CPU: in Intel's architecture, for example, the least significant byte is stored first, 
while in the 68000 family of microprocessors the most significant byte is stored 
first. 

a a a 

Since it is difficult for a human brain to grasp long sequences of 0's and 1's, 
programmers who have to deal with binary data often use the hexadecimal (or 
simply “hex”) representation in their documentation and programs.  The hex 
system is the base-16 system, which uses 16 digits.  The first ten digits are the 
usual 0 through 9, with the eleventh through sixteenth digits represented by the 
letters 'A' through 'F'.  A byte can be split into two four-bit quads; each quad 
represents one hex digit, as follows: 
 

Decimal      Binary         Hex 
 
   0          0000           0 
   1          0001           1 
   2          0010           2 
   3          0011           3 
   4          0100           4 
   5          0101           5 
   6          0110           6 
   7          0111           7 
   8          1000           8 
   9          1001           9 
  10          1010           A 
  11          1011           B 
  12          1100           C 
  13          1101           D 
  14          1110           E 
  15          1111           F 

 
Experienced programmers remember the bit patterns for the sixteen hex digits and 
can easily convert a binary number into hex and back.  The following examples 
show a few numbers represented in the decimal, 16-bit binary, and hex systems: 
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Decimal              Binary               Hex 
 
    0          00000000 00000000          0000 
    1          00000000 00000001          0001 
   12          00000000 00001100          000C 
   32          00000000 00100000          0020 
  128          00000000 10000000          0080 
  255          00000000 11111111          00FF 
  256          00000001 00000000          0100 
32767          01111111 11111111          7FFF 
32768          10000000 00000000          8000 
65535          11111111 11111111          FFFF 

   a a a 

What about negative numbers?  The same bit pattern may represent an unsigned 
(positive) integer and a negative integer, depending on how a particular instruction 
interprets it.  Suppose we use 16-bit binary numbers, but now we decide that they 
represent signed integers.  Positive integers from 0 to 215–1 = 32767 can be 
represented as before.  These use only 15 least-significant bits.  As to negative 
integers, their representation may be machine-dependent, varying from CPU to 
CPU.  Many CPUs, including the Intel family, use a method called 
two's-complement arithmetic.  In this method, a negative integer x in the range 
from –1 to –215 = –32768 is represented the same way as the unsigned binary 
number 216 – | x | = 65536 – | x | , where | x | is the absolute value of x.  For 
example: 
 

Decimal    Decimal           Binary            Hex 
 signed   unsigned 
 
 –32768      32768      10000000 00000000      8000 
     –2      65534      11111111 11111110      FFFE 
     –1      65535      11111111 11111111      FFFF 
      0          0      00000000 00000000      0000 
      1          1      00000000 00000001      0001 
  32767      32767      01111111 11111111      7FFF 

 
Unsigned numbers greater than or equal to 32768 would be interpreted as negative 
numbers.  Note that in these numbers the leftmost bit is always 1, so this bit can 
serve as a sign indicator.  –1 is represented as hex FFFF. 
 
When you add two unsigned numbers and the result overflows the 16-bit value, the 
most significant (carry) bit is thrown away.  For example: 
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    Decimal              Binary 
   unsigned 
 
     65530         11111111 11111010 
  +      8         00000000 00001000 
   ––––––––––––––––––––––––––––––––– 
     65538       1 00000000 00000010 
 
      Take away the lost carry bit: 
 
  –  65536       1 00000000 00000000 
   ––––––––––––––––––––––––––––––––– 
         2         00000000 00000010 

 
You obtain exactly the same result if you interpret the same binary values as 
signed numbers in the two's-complement form: 
 

    Decimal              Binary 
   unsigned 
 
        –6         11111111 11111010 
  +      8         00000000 00001000 
   ––––––––––––––––––––––––––––––––– 
         2         00000000 00000010 

 
That is what makes the two's-complement representation of negative integers 
convenient. 

a a a 

Real numbers are represented using one of the standard formats expected by the 
CPU (or a separate floating-point arithmetic unit).  Like scientific notation, this 
representation consists of a fractional part (mantissa) and an exponent part, but 
here both parts are represented as binary numbers.  The IEEE (Institute of 
Electrical and Electronics Engineers) standard for a 4-byte (32-bit) representation 
uses 1 bit for the sign, 8 bits for the exponent and 23 bits for the mantissa.  127 is 
added to the exponent to ensure that negative exponents are still represented by 
non-negative numbers. 
 
The mantissa represents a number x greater than or equal to 1 and less than 2.   Its 
high-order binary digit (leftmost bit) is always equal to 1; this bit is implicit and 
not included in the binary representation.  Figure 1-1 gives a few examples.  This 
format allows programmers to represent numbers in the range from approximately 
–3.4 ×1038 to 3.4 ×1038 with at least seven digits of precision. 
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               8 bits                    23 bits

   3:  0 10000000 1.10000000000000000000000
          +   1 (+ 127)        1.1
                                            1.1(base 2) × 21 = 11(base 2) = 310

 –10:  1 10000010 1.01000000000000000000000
          –   3 (+ 127)        1.010
                                    –1.010(base 2) × 23 = –1010(base 2) = –1010

 3/4:  0 01111110 1.10000000000000000000000
          +  –1 (+ 127)       1.1
                                        1.1(base 2) × 2–1 = .11(base 2) = 3/410

             Byte 1       Byte 2         Byte 3     Byte 4

 Sign

 Exponent
  (+ 127)

  Mantissa
  Implied
 "binary"  point

Implicit high-order
bit of mantissa –
always 1

 
 

Figure 1-1.   IEEE standard representation of 32-bit floating-point numbers 
 
 

1.3.2 Characters 
 
Characters are represented by numeric codes.  In most computers the numeric 
codes range from 0 to 255 and fit into one byte.  The two most common character 
codes are EBCDIC (Extended Binary Coded Decimal Interchange Code), used in 
IBM mainframes, and ASCII (American Standard Code for Information 
Interchange), used in personal computers, printers and other devices.  In the PC 
world, the term ASCII file refers to a text file (in which characters are represented 
in ASCII code), as opposed to a binary file that may contain numbers, images or 
any other digitized information.  Normally you won't find EBCDIC-encoded data 
on a PC unless the file originated on a mainframe. 
 
ASCII code proper defines 128 characters with codes from 0 to 127 and uses only 
seven bits in a byte.  The second half of the code, from 128 to 255, is called 
extended ASCII and may vary from machine to machine.  Codes from 33 to 127 
represent “printable” characters: digits, upper- and lowercase letters, punctuation 
marks and so on.  32 (hex 20) is a space. 
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   Hex   0_       1_       2_       3_       4_       5_       6_       7_

   _0    0       16       32       48       64       80       96      112

          NUL      DEL    (SPACE)     0       @       P       `       p
   _1    1       17       33       49       65       81       97      113

          SOH      DC1       !       1       A       Q       a       q
   _2    2       18       34       50       66       82       98      114

          STX      DC2       "       2       B       R       b       r
   _3    3       19       35       51       67       83       99      115

          ETX      DC3       #       3       C       S       c       s
   _4    4       20       36       52       68       84      100      116

          EOT      DC4       $       4       D       T       d       t
   _5    5       21       37       53       69       85      101      117

          ENQ      NAK       %       5       E       U       e       u
   _6    6       22       38       54       70       86      102      118

          ACK      SYN       &       6       F       V       f       v
   _7    7       23       39       55       71       87      103      119

          BEL      ETB       '       7       G       W       g       w
   _8    8       24       40       56       72       88      104      120

           BS      CAN       (       8       H       X       h       x
   _9    9       25       41       57       73       89      105      121

           HT       EM       )       9       I       Y       i       y
   _A   10       26       42       58       74       90      106      122

           LF      SUB       *       :       J       Z       j       z
   _B   11       27       43       59       75       91      107      123

           VT      ESC       +       ;       K       [       k       {
   _C   12       28       44       60       76       92      108      124

           FF       FS       ,       <       L       \       l       |
   _D   13       29       45       61       77       93      109      125

           CR       GS       -       =       M       ]       m       }
   _E   14       30       46       62       78       94      110      126

           SO       RS       .       >       N       ^       n       ~
   _F   15       31       47       63       79       95      111      127

           SI       US       /       ?       O       _       o   (NUL)

 
Figure 1-2.   ASCII code used in personal computers, 

printers and other devices 
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The first 32 ASCII codes (0-31) are reserved for special control codes.  For 
example, code 13 (hex 0D) is “carriage return” (CR), 10 (hex 0A) is “line feed” 
(LF), 12 (hex 0C) is “form feed” (FF) and 9 (hex 09) is “horizontal tab” (HT).  The 
use of control codes may depend to some extent on the program or device that 
processes them.  A standard ASCII table, including more obscure control codes, is 
presented in Figure 1-2. 
 

1.4 Software Overview 
 
The term software may refer not only to computer programs but also to 
implementations of tasks or functions through programs or data files, as in 
“software interface,” “software fonts,” and so on.  The line between hardware and 
software is not always clear.  In the modern world microprocessors are embedded 
in many objects, from microwave ovens and VCRs to satellites.  Their programs 
are developed using simulation tools on normal computers; when a program is 
finalized, it is permanently wired into ROMs.  Such programs are referred to as 
firmware. 
 
A modern computer not only runs individual programs but also maintains a 
“software environment.”  The bottom layer in this environment comprises BIOS, 
device drivers, interrupt handlers — programs that directly support hardware 
devices and functions.  The next layer is the operating system, a software program 
that provides convenient and efficient computer access services to users and 
standard support functions to other programs. 
 
The operating system loads programs into RAM from secondary storage and runs 
them.  On mainframes, operating systems provide time-sharing that allows 
multiple users to work on the computer concurrently.  In such a multi-user system, 
one user may be slowly editing a file or entering data on a terminal using only a 
small fraction of available CPU time.  At the same time another program may be 
doing a lot of “number-crunching.”  A multi-user operating system allocates “time 
slices” to each program and automatically switches between them.  The operating 
system prioritizes the “jobs” and swaps segments of programs in and out of 
memory as needed.  A personal computer assumes one user, but contemporary 
users often enjoy a multi-tasking operating system that lets them keep several 
programs active concurrently. 
 
The operating system also establishes and maintains a file system in secondary 
storage.  Part of the operating system is a set of routines (sets of instructions, 
callable from other programs) that provide standard service functions to programs.  
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These include functions for creating, reading, and writing files.  The operating 
system shell provides a set of user commands, including commands for displaying, 
copying, deleting and printing files, executing programs, and so on.  More modern 
operating systems use GUI (Graphical User Interface), where commands can be 
entered by selecting items in menus or by clicking a mouse on an icon that 
represents a command or an object graphically. 
 
On personal computers, files are organized into a branching structure of directories 
and subdirectories.  The operating system provides commands for navigating 
through the directory tree. 
 
The top layer of software consists of application programs that make computers 
useful to people. 
 

1.5 Software Development 
 
In the early days programs were written on paper in numeric code, then punched 
on cards or paper tape, read into computer memory from optical readers and tested 
by comparing the test results with the expected results.  The current software 
development environment is much friendlier.  A programmer is equipped with a 
number of software tools that make the process much more efficient. 
 
Computer programmers very quickly realized that a computer itself is a perfect 
tool for assisting them in writing programs.  The first step towards automation was 
made when programmers began to use assembly languages instead of numerically 
coded CPU instructions.  In an assembly language every CPU instruction has a 
short mnemonic name.  A programmer can give symbolic names to memory 
locations and can refer to these locations by name.  For example, a programmer 
using Intel's 8088 assembly code can write: 
 
index   dw     0          ; "Define word" –– reserve 2 bytes 
                          ;  for an integer and call it "index". 
        ... 
        mov    si,index   ; Move the value of index into 
                          ;   the SI register. 
        ... 

 
A special program, called the assembler, converts the program written in assembly 
language into the machine code expected by the CPU. 
 
Obviously, assembly language is totally dependent on a particular CPU; “porting” 
a program to a different machine would require rewriting the code.  As the power 
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of computers increased, several high-level programming languages were 
developed for writing programs in a more abstract, machine-independent way.  
FORTRAN (Formula Translation Language) was defined in 1956, COBOL 
(Common Business-Oriented Language) in 1960, and Pascal and C in the 1970s.  
C++ gradually evolved by adding classes to C in the 1980s. 
 
A programmer writes the text of the program using a software tool, a program 
editor.  Unlike general-purpose word-processing programs, programming editors 
have special features useful for writing programs.  The text of a program in a 
particular programming language is referred to as source code, or simply the 
source.  The source code is stored in a file, called the source file or the source 
module. 
 
A program written in a high-level language obeys the very formal syntax rules of 
the language.  This syntax produces statements so unambiguous that even a 
computer can interpret them correctly. A special program, called a compiler, 
analyzes the source code and translates it into machine language by generating 
appropriate CPU instructions.  The result is saved in another file, called the object 
module.  A large program may include several source modules that are compiled 
into object modules separately.  Another program, a linker, combines all the object 
modules into one executable program and saves it in an executable file.  Figure 1-3 
illustrates the process of converting source code into an executable program. 
 
With a large project, especially one that involves several developers, it may be 
difficult to keep track of different versions and changes to the source code.  
Version-control software imposes a discipline for changing code among the 
developers.  It prevents two developers from modifying the same module at the 
same time and automatically saves previous versions of files.  A make utility 
program processes a project description that specifies file dependencies and the 
commands necessary to build a particular file.  Make examines the date and time 
labels on files; it will recompile a source file, for example, if its date is later than 
on the corresponding object file.  Make can automatically build a number of 
specified executable programs. 
 
Few programs are written right away without errors or, as programmers call them, 
bugs.  Some errors violate the syntax rules of the language and are caught by the 
compiler.  Other bugs come from a programmer's logical errors or failures to 
handle certain data or conditions properly.  It is not always easy to correct bugs 
just by looking at the source code or by testing the program on different data.  To 
help with this, there are special debugger programs that allow the programmer to 
trace the execution of a program “in slow motion.”  A debugger can suspend a 
program at a specified break point  or step through the program statements or CPU 
instructions one at a time.  With the help of a debugger, the programmer can 
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examine the sequence of operations and the contents of registers and memory 
locations while the program is running. 
 
In modern systems, software development tools are combined into one Integrated 
Development Environment (IDE).  The IDE provides a convenient GUI (graphical 
user interface) — one mouse click on an icon will compile, link, and execute your 
program. 
 
 
 

         EDITOR            COMPILER           LINKER

     �      �     �
                                        Source                            Object                        Executable
                                         Code                               Code                           Program

�       �       �       �
                   HELLO.CPP          HELLO.OBJ           HELLO.EXE

     .
                                       Hello, World!

               ☺

#include <iostream.h>

int main()

{
  cout << "Hello, World!\n";
  return 0;
}

 
Figure 1-3.   Software development cycle: edit-compile-link-run 
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1.6 Suggested Reading 
 
Portraits in Silicon, by Robert Slater, The MIT Press, 1987 (ISBN 
0-262-19262-4). 
 

An informative history of computer concepts, technology, and 
software based on interviews with and profiles of key contributors. 

 
History of Programming Languages II, edited by Thomas J. Bergin, Jr. and 
Richard G. Gibson, Jr., ACM Press and Addison-Wesley, 1996 (ISBN 
0-201-89502-1). 
 

The volume is based on the Second ACM SIGPLAN History of 
Programming Languages Conference that took place on April 
20-23 1993 in Cambridge, Massachusetts.  Chapters on individual 
programming languages include a paper by each author of the 
language and biographies of the authors.  The book includes 
chapters on C, C++, Pascal, Smalltalk, Lisp and other languages.  
A volume from the first conference (History of Programming 
Languages, edited by Richard L Wexelblat, Academic Press, 
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2.1 Discussion 
 
In this chapter we take our first look at a C++ program.  We will identify some 
elements of the program, learn commonly used terms, and start to understand the 
general rules of “writing code” (an informal way of referring to programming). 
 
The complexity of a program (or the amount of work performed by a programmer) 
is often measured in terms of lines of code: that is, the number of lines in the 
program source file. 
 

2.2 Case Study: Dictionary Program 
 
For our first encounter we have chosen a program that is neither too large nor  too 
trivial: about 120 lines of code.  The program sets up a miniature on-line foreign 
language dictionary: you enter a word, and the program gives its translation in 
another language.  We have called this program Dictionary and named the program 
source file dict.cpp.  The .cpp extension indicates that the program is written in 
C++ (C Plus Plus).   
 
First, let’s see how this program behaves after it is compiled and allowed to 
interact with a user: 
 

ENGLISH–ITALIAN DICTIONARY                                           � 
 (7 words) 
 
Enter a word or 'q' to quit ==> I 
io 
 
Enter a word or 'q' to quit ==> this 
questo 
 
Enter a word or 'q' to quit ==> program 
programma 
 
Enter a word or 'q' to quit ==> hate 
hate –– not in the dictionary. 
 
Enter a word or 'q' to quit ==> love 
amare 
 
Enter a word or 'q' to quit ==> q 
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The dictionary itself is not a part of the program but is kept in a separate data file.  
We have named this file DICT.DAT and put in some English words and their Italian 
translations. Our toy dictionary contains only seven words.  The first line in the 
data file holds the name of the dictionary. 
 
Throughout the book, the � icon, preceded by the name of a file, 
indicates that the file is available on the accompanying disk. 

 

  DICT.DAT              � 
ENGLISH–ITALIAN DICTIONARY 
want    volere 
a       un 
I       io 
program programma 
this    questo 
today   oggi 
love    amare 

 
By separating the data file from the program we have made our program 
more general: the same program will work with different dictionary files 
and can therefore be used for different languages.  We can also add or 
change words and translations easily without changing our program. 

 
When we run our program, it initially reads the dictionary file and loads the words 
and their translations into the computer memory.  The format of the dictionary data 
file has nothing to do with C++ and has been defined ahead of time by the 
programmer or system designer.  The programmer then made sure that the program 
could read and use the DICT.DAT file.  For example, the program “knows” that the 
first line in DICT.DAT is a title line that identifies the dictionary, and the program 
displays the title on the computer screen at the beginning of the session.  The 
program also counts the entries in the dictionary and displays that number on the 
screen. 

a a a 

Figure 2-1 shows the source code for the program.  To the uninitiated it looks quite 
cryptic.  Fortunately, our intentions at this point are quite modest: we just want to 
get a glimpse of how C++ code looks and identify some of its elements and 
structures.  By looking at various elements in the program, we also get an idea of 
what we need to know to be proficient with C++.   
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Take a quick look at this code and try to discern some structure in it.  Then read 
the explanations that follow the code.  If you do not understand some of the terms 
used in the explanations, be patient.  We will define them in later chapters. 
 

  DICT.CPP               � 
/* DICT.CPP 
 
    This program works as an on–line dictionary. It reads a word 
    and shows its translation.  The program loads the dictionary 
    data from the DICT.DAT file. 
  
    Author: M. Webster 
    Rev. 1.0ap  09/20/98 
*/ 
 
#include <iostream.h> 
#include <fstream.h> 
#include "apvector.h" 
#include "apstring.h" 
 
struct ENTRY { 
    apstring word; 
    apstring translation; 
}; 
 
const int MAXWORDS = 1000;  // Max number of words in the dictionary 
 
// Function prototypes: 
bool LoadDictionary(apstring fileName, apvector<ENTRY> &dict); 
bool FoundWord(const apvector<ENTRY> &dict, 
               const apstring &word, apstring &translation); 
 
/****************************************************************/ 
/**************            Main Program             *************/ 
/****************************************************************/ 
 
int main() 
 
{ 
    apvector<ENTRY> dict(MAXWORDS); 
    apstring word, translation; 
    bool ok, quit; 
 
    // Load the dictionary from the file 
 
    ok = LoadDictionary("DICT.DAT", dict); 
    if (!ok) { 
        cout << "*** Cannot load dictionary ***\n"; 
        return 1; 
    } 
 
    // Translate words 
 
    quit = false; 
    while (!quit) { 
        cout << "Enter a word or 'q' to quit ==> "; 
        cin >> word;             // Read one word and 
        cin.ignore(80, '\n');    //   skip the rest of the line 
        if (word == "q") 
            quit = true; 
        else if (FoundWord(dict, word, translation)) 
            cout << translation << "\n\n"; 
        else 
            cout << word << " –– not in the dictionary.\n\n"; 

Comments 

Preprocessor 
#include directives 

Function 
 prototypes 

Comments 

"Main" 
function 
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    } 
    return 0; 
} 
 
/****************************************************************/ 
/**************              Functions              *************/ 
/****************************************************************/ 
 
bool LoadDictionary(apstring fileName, apvector<ENTRY> &dict) 
 
// Reads dictionary entries from a file. 
// Returns true if successful, false if cannot open the file. 
 
{ 
    int cnt = 0; 
    apstring line; 
 
    // Open dictionary file: 
    ifstream inpFile(fileName.c_str()); 
    if (!inpFile) 
        return false; 
 
    // Read and display the header line: 
    getline(inpFile, line); 
    cout << line << endl; 
 
    // Read words and translations into the dictionary array: 
    while (cnt < MAXWORDS && 
           inpFile >> dict[cnt].word >> dict[cnt].translation) { 
        inpFile.ignore(80, '\n'); // Skip the rest of the line 
        cnt++; 
    } 
 
    // Report the number of entries: 
    cout << " (" << cnt << " words)\n\n"; 
    dict.resize(cnt); 
 
    return true; 
} 
 
/****************************************************************/ 
 
bool FoundWord(const apvector<ENTRY> &dict, 
               const apstring &word, apstring &translation) 
 
// Finds a word in the dictionary. 
//  dict –– the dictionary array 
//  word –– word to translate 
//  translation –– returned translation from the dictionary. 
// Returns true if the word has been found, false otherwise. 
 
{ 
    bool found = false; 
    int i, len = dict.length(); 
 
    for (i = 0;   !found && i < len;   i++) { 
        if (dict[i].word == word) { 
            translation = dict[i].translation; 
            found = true; 
        } 
    } 
    return found; 
} 

 
Figure 2-1.   The source code of the Dictionary program 
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Function 
header 
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2.3 Use of Comments 

 
The first thing we notice is that the code contains some phrases in plain English.  
These are comments inserted by the programmer to explain and document the 
program’s features.  It is a good idea to start any program with a comment 
explaining what the program does, who wrote it and when, and how to use it.  The 
comment may also include the history of any revisions: who made changes to the 
program, when, and why.  The author must assume that his program will be read, 
understood, and perhaps modified by other people. 
 
In C++, the comments may be set apart from the rest of the code in two ways. The 
first method is to place a comment between /* and */ marks: 
 
/* Maximum number of words 
            in the dictionary */ 
const int MAXWORDS = 1000; 

 
In this method, the comment may be placed anywhere in the code, even within 
expressions.  For example: 
 
/* This is allowed, but bad style: */ 
const int MAXWORDS /* Max number of words in the dictionary */ = 1000; 

 
The only exception is that nested comments (i.e. one set of /*...*/ within 
another) are normally not allowed: 
 
/* /* This nested comment */  will NOT be processed 
  correctly, unless your compiler has 
  a special option enabled for handling nested comments. */ 

 
The second method is to place a comment after a double slash mark on one line.  
All the text from the first double slash to the end of the line is treated as comment.  
For example, we can write: 
 
const int MAXWORDS = 1000;  // Max number of words in the dictionary 

 
or 
 
// Maximum number of words in the dictionary: 
const int MAXWORDS = 1000; 

 
Judicious use of comments is one of the tools in the constant struggle to 
improve the readability of programs.  Comments document the role and 
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structure of major code sections, mark important procedural steps, and 
explain obscure or unusual twists in the code. 

 
On the other hand, excessive or redundant comments may clutter the code and 
become a nuisance.  A novice may be tempted to comment each statement in the 
program even if the meaning is quite clear from the code itself.  Experienced 
programmers use comments to explain the parts of their code that are less obvious. 
 
Comment marks are also useful for commenting out (temporarily disabling) some 
statements in the source code.  By putting a set of /*...*/ around a fragment of 
code or a double slash at the beginning of a line, we can make the compiler skip it 
on a particular compilation.  This can be useful for making tentative changes to the 
code. 
 

2.4 Functions 
 
The Dictionary program exemplifies the traditional procedural approach to 
programming.  In this approach, a program is viewed as a set of procedures or 
functions that operate on some data.  Theoretically, it is possible to write any 
program as one continuous list of statements.  But it is much easier to design, 
develop, and test a program if the program is split into smaller pieces, with each 
piece responsible for a particular procedure.  In C++, fragments of code that 
perform a certain task or calculate and return a certain value are called functions.  
(Other languages, such as Pascal, distinguish functions, which perform a 
calculation and return an answer, from procedures, which manipulate data but do 
not explicitly return a value.  In C++ the term “procedure” is not used — 
everything is a “function.”) 
 
Every C++ program must have one special function, called main(), 
which receives control first when the program is executed. 

 
The C++ compiler (or, more precisely, the linker) builds into your executable 
program a small initialization module that makes some system-specific 
preparations and then passes control to main().  When your program is finished 
with main(), the initialization module takes over and does some cleaning up 
before it returns control back to the operating system.  main() is often informally 
referred to as the main program (even though it is only a function and the program 
may have other functions).  In our Dictionary program, main() is declared int, 
which indicates that this function returns an integer value: 
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... 
int main() 
... 

 
Both main and int are reserved words in C++, because they  have a specific 
purpose in the language and cannot be used for other purposes. 
 
In addition to main(), our Dictionary program contains two functions:  
LoadDictionary(…), and FoundWord(…).  LoadDictionary(…) reads the 
DICT.DAT file and loads the dictionary into the computer memory.  The 
FoundWord(…) function looks up a given word in the dictionary and retrieves its 
translation. 
 
Functions may take arguments and may return a value.  For example, the function 
 
bool FoundWord(const apvector<ENTRY> &dict, 
               const apstring &word, apstring &translation); 

 
takes three arguments, written in parentheses after its name: dict,  an array of 
dictionary entries; word, a character string that contains the original word; and 
translation, a string to which the translation is copied if the word has been 
found.  The FoundWord(…) function returns a bool (short for Boolean, i.e., 
true/false) value that can be true if the word has been found and false 
otherwise. 
 
In giving names to functions and their arguments, the programmer tries 
to choose names that will make the code more readable. 

 
Whenever a statement in the program mentions a function name with some 
arguments in parentheses, the program carries out that function. We say that the 
function is called with certain arguments.  A function can be called from main() 
or other functions. 
 
For example, the first executable statement in the main program is 
 
    ok = LoadDictionary("DICT.DAT", dict); 

 
This statement calls the LoadDictionary(…) function with two arguments,  the 
name of the dictionary file and the dictionary array.  The function reads the 
dictionary data from the file into memory and returns true if successful, and 
false if it could not find the file.  The returned value is saved in a variable called 
ok. 
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A function uses the return statement to return a value: 

    return expression; 

A void function cannot return any value, but it can use a return 
statement without a return value: 

 
    if (...) 
        return; 

 
The value returned by main() is usually interpreted by the operating system as an 
indicator of a successful run of the program or an error. 
 
What actually happens in the computer when a function is called?  This is 
explained in detail in Part 2.  Basically, the program places the arguments where 
the function can get them, saves the place the function is called from, and passes 
control to the first instruction in the function code.  When the function has finished 
its work, it places the return value where the calling statement can get it and goes 
back to the point where the calling function left off.  A program can call a function 
as many times as it needs a certain task carried out. 
 
The order of functions in source code is largely a matter of taste.  Sometimes 
programmers put the main program first, followed by the functions; that is what we 
have done in the Dictionary program.  Others may put the main program at the 
end.  In any case, all functions have to be declared before we can call them: the 
compiler has to know what type of arguments they take and what type of values 
they return.  This is accomplished by using function prototypes, which are usually 
placed somewhere near the top of the program.  In our Dictionary program we put 
the prototypes for the LoadDictionary(…) and FoundWord(…) functions above 
main()so that when we call these functions from  main(), the compiler will 
know what to expect: 
 
... 
// Function prototypes: 
bool LoadDictionary(apstring fileName, apvector<ENTRY> &dict); 
bool FoundWord(const apvector<ENTRY> &dict, 
               const apstring &word, apstring &translation); 
 
/****************************************************************/ 
/**************            Main Program             *************/ 
/****************************************************************/ 
 
int main() 
 
{ 
    ... 
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Function prototypes declare functions and are also known as function 
declarations.  Later in the program come the function definitions, which contain 
the actual function code.  The code, placed between opening and closing braces, is 
called the body of the function.  Function definitions must agree with their 
prototypes: they must take the types of arguments and return the types of values 
that their prototypes say they do.  If a function is defined above its first use, no 
prototype is necessary (see Figure 2-2).   
 
Usually, each function definition is accompanied by a comment that briefly 
describes what that function does, its arguments, and its return value, if any.  The 
following is the complete definition of the FoundWord(…) function from our 
Dictionary program: 
 
bool FoundWord(const apvector<ENTRY> &dict, 
               const apstring &word, apstring &translation) 
 
// Finds a word in the dictionary. 
//  dict –– the dictionary array 
//  word –– word to translate 
//  translation –– returned translation from the dictionary. 
// Returns true if the word has been found, false otherwise. 
 
{ 
    bool found = false; 
    int i, len = dict.length(); 
 
    for (i = 0;   !found && i < len;   i++) { 
        if (dict[i].word == word) { 
            translation = dict[i].translation; 
            found = true; 
        } 
    } 
    return found; 
} 

a a a 

Sometimes it is convenient to view a function as a procedural abstraction, 
somewhat like the ice machine in a refrigerator. We know what goes in, we know 
what comes out, but until we are ready to build the machine, we are not too 
concerned about exactly what happens inside.  Likewise, when we begin to write a 
program, we can (at some level of abstraction) assume that we will need functions 
to handle certain tasks — without worrying too much about the details of their 
code. We can create the prototypes for them, on the assumption that the functions 
will be coded later. When we have grasped the big picture and are ready to work 
out all the details, we can go back and write the code for all our functions. 
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To summarize, there are three main reasons for using functions.  One is to split the 
code into manageable smaller pieces that can be conceptualized,  programmed, and 
even tested separately.  Another is to be able to perform the same task in the 
program several times without duplicating the same code, simply by calling the 
same function from different places in the program.  Finally, thinking about 
functions keeps a programmer from getting bogged down in the nitty-gritty of a 
program before he has worked out the overall design. 
 
 

    
Functions after main: 

 
// *** Prototypes *** 
 
...Function1(…); 
...Function2(…); 
................................ 
 
int main() 
{ 
 ............ 
 ............ // call Function2 
 ............ // call Function1 
} 
 

...Function1(…) 
{ 
 ............ 
 ............ // call Function2 
} 
 

...Function2(…) 
{ 
 ............ 
 ............ // call Function... 
 
} 

 

 
   Functions before main: 

 
// Prototypes optional 
 
 

...Function1(…) 
{ 
 ............ 
 ............ 
} 
 

...Function2(…) 
{ 
 ............ 
 ............  // call Function1 
} 
 
int main() 
{ 
 ............ 
 ............ // call Function2 
 ............ // call Function1 
} 

 

 
Figure 2-2.   Placement of functions and function prototypes in the 

source code 
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2.5 Class Libraries and Header Files 
 
If we look again at the LoadDictionary(…) function, we can see that it contains 
the lines: 
 
... 
    // Read and display the header line: 
    getline(inpFile, line); 

 
This looks as if it might contain a call to the function getline(…).  But if this is 
indeed the case, where does this function come from, and where is it declared and 
defined?  The answer is that getline(…) is indeed a function, and it comes with 
the apstring class.  A class is an important concept in C++, one that we will 
keep returning to again and again.  At this point, all we need to know is that a class 
provides specific functionality in some prepackaged form.  For example, the 
apstring class handles strings of text. 
 
A modern C++ development environment supplies a vast collection of 
preprogrammed functions and classes for use in your programs.  Like 
prefabricated construction blocks, these functions and classes can save 
you a lot of time. 

 
Libraries of classes come with your C++ compiler and from independent software 
vendors.  For instance, input and output in C++ programs is handled by the 
standard input and output classes provided with any C++ compiler.  Other class 
libraries are available in the public domain.  A few  fundamental classes are 
combined in a library called the Standard Template Library (STL).  The 
apstring and apvector classes used in the Dictionary program are two of the 
five “AP” classes provided by The College Board’s AP C++ Development 
Committee for use in Advanced Placement examinations.  These classes 
implement a subset of the STL. 
 
Many functions in separate, already compiled modules are also collected in the 
standard C library.  Strictly speaking, these library functions are not a part of the 
C++ programming language, but over the years of evolution of C and C++, they 
have become “standard.”  The standard library contains hundreds of functions that 
do all kinds of things: return the current time and date, convert numbers into 
character strings and vice versa, calculate mathematical functions, and so on. The 
actual libraries may differ slightly among suppliers of C++ compilers, but you can 
expect a vast majority of core functions to come with any compiler. 
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The compiler needs the definitions of classes and prototypes for the library 
functions; for your convenience, these are provided in the so-called include or 
header files that come with your compiler or with a class library.  Instead of 
copying the required prototypes and definitions into your program, you can simply 
include the appropriate header file by using the #include directive.  “Includes” 
are usually placed at the very top of a program.  The Dictionary program, for 
example, has four “includes:” 
 
... 
#include <iostream.h> 
#include <fstream.h> 
#include "apvector.h" 
#include "apstring.h" 
... 

 
iostream.h and fstream.h contain definitions of classes for C++ standard 
input/output and file I/O; apvector.h and apstring.h contain the definitions 
of the apvector and apstring classes.  The names for the system header files 
are not a part of the C++ language, but they, too, have become standard over time.  
A compiler’s library documentation will tell you which header file to include with 
each function. 
 
A header file is essentially a file of source code.  The #include directive instructs 
the compiler to replace the #include line with the full text of the specified file.  
#include works with any source file, not just standard header files.  Eventually 
you will write your own header files. 
 

2.6 The Preprocessor 
 
#include is an example of a preprocessor directive.  The preprocessor is a 
component of the compiler that does some preliminary work with your code before 
the actual compilation.  The preprocessor strips comments from the code and 
expands #include directives into the actual text of the included file.  There are 
other preprocessor directives.  The most common two are #define for defining a 
constant or a macro and #ifdef–#else–#endif for conditional compilation. 
 
The #define directive has the general form of 
 
#define someName expression 

 
The preprocessor goes through your code, substituting expression for someName 
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everywhere it appears.  For example, we might say: 
 
#define MAXWORDS 1000  /* Max number of words in the dictionary */ 

 
Defining a constant and referring to it in your program by name, rather 
than using its specific value, makes your code more general and easier to 
change. 

 
For example, if we want to change the maximum size of the dictionary from 1000 
to 3000, all we have to do is change one line in the program.  Otherwise, we would 
have to go through and change every relevant occurrence of “1000” by hand. 
 
#define was more useful in C.  In C++ the preferred method of naming a 
constant is a constant declaration: 
 
const int MAXWORDS = 1000;  // Max number of words in the dictionary 

a a a 

Conditional compilation allows you to include or exclude fragments of code from 
the program based on additional conditions.  It takes the form: 
 
#ifdef someName 
 
... // some code (A) 
 
#else 
 
... // other code (B) 
 
#endif 

 
This means that if someName is defined, the first fragment (A) is compiled and 
included in the program; otherwise, the second fragment (B) is included.  (The 
second part of the statement is optional. Without the #else and the second 
fragment, the compiler would simply skip fragment (A).)  someName can be 
#define’d, defined through a special compilation option, or predefined under 
certain compilation conditions.  The preprocessor includes the appropriate 
fragment into your program prior to compilation. 
 
There is also an #ifndef directive — “if not defined.”  It instructs the compiler to 
include a particular fragment only if the name is not defined. 
 
One use of conditional compilation is to include special debugging statements that 
assist in testing the program but are left out of the final version.  For example: 
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// Comment out the following line for compiling without DEBUG: 
#define DEBUG 1 
        ... 
 
        inpFile >> dict[i].word >> dict[i].translation; 
 
#ifdef DEBUG 
        cout << dict[i].word << dict[i].translation; 
#endif         

 
Another use is for handling code that is written for a specific system or compiler.  
For example: 
 
#ifdef  _Windows 
 
...// MS Windows–specific code 
 
#else 
 
... // MS DOS code 
 
#endif 

a a a 

The preprocessor directives stand out from the rest of the program.  
Each directive is written on a separate line and starts with the # 
character.  Preprocessing is a separate step that precedes the actual 
compilation. 

 
In the early versions of C compilers, the preprocessor was a separate program that 
read the source file, prepared it for compilation, and saved the result in a temporary 
file.  Some modern compilers allow you to run just the preprocessor without 
compilation and save the result in a file. 
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2.7 Reserved Words and Programmer-Defined Names 

 
In the C++ language, a number of words are reserved for some special purpose 
while other words are arbitrary names given by the programmer.  A partial list of 
the C++ reserved words is shown below: 
 

char sizeof if default 
int typedef else goto 
float const for return 
double static while extern 
short void do class 
long enum switch private 
unsigned struct continue public 
signed union break protected 

 
Reserved words are used only in a strictly prescribed way. 
 
The C++ compiler is case-sensitive:  changing one letter in a word from 
lowercase to uppercase makes it a different word.  All reserved words use 
only lowercase letters. 

 
Figure 2-3 shows a fragment from the Dictionary program with all reserved words 
highlighted. 
 
In addition to reserved words, there are other standard names and words whose 
meaning normally does not vary.  These include all library function names, names 
of predefined input and output classes, and some other words.  Our Dictionary 
program uses the following standard names: 
 
 cin, cout — stream I/O classes. 
 ifstream, endl — stream I/O types and manipulators. 
 apstring, apvector — AP classes. 
 
Other names in the Dictionary program:  
 
 ignore — 
 
are names of  member functions from the input/output class library.  These names 
can be reused by the programmer for other purposes without conflict. 
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/* DICT.CPP 
    ... 
*/ 
 

#include <iostream.h> 
#include <fstream.h> 
#include "apvector.h" 
#include "apstring.h" 
 

struct ENTRY { 
    apstring word; 
    apstring translation; 
}; 
 

const int MAXWORDS = 1000;  // Max number of words in the dictionary 
 
// Function prototypes: 

bool LoadDictionary(apstring fileName, apvector<ENTRY> &dict); 
bool FoundWord(const apvector<ENTRY> &dict, 
               const apstring &word, apstring &translation); 
 
/****************************************************************/ 
/**************            Main Program             *************/ 
/****************************************************************/ 
 

int main() 
 
{ 
    apvector<ENTRY> dict(MAXWORDS); 
    apstring word, translation; 

    bool ok, quit; 
 
    // Load the dictionary from the file 
 
    ok = LoadDictionary("DICT.DAT", dict); 

    if (!ok) { 
        cout << "*** Cannot load dictionary ***\n"; 

        return 1; 
    } 
 
    // Translate words 
 
    quit = false; 

    while (!quit) { 
        cout << "Enter a word or 'q' to quit ==> "; 
        cin >> word;             // Read one word and 
        cin.ignore(80, '\n');    //   skip the rest of the line 

        if (word == "q") 
            quit = true; 

        else if (FoundWord(dict, word, translation)) 
            cout << translation << "\n\n"; 

        else 
            cout << word << " –– not in the dictionary.\n\n"; 
    } 

    return 0; 
} 

 
Figure 2-3.   Reserved words in a fragment of the Dictionary program 
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A programmer gives names to structures, functions, and variables.  These 
names can use upper- and lowercase letters, digits, and the '_' 
(underscore) character.  No name may start with a digit. 

It is very important to choose names that are somewhat self-explanatory 
and improve the readability of the program.  It is also desirable to follow 
a convention — for yourself or within a group or organization.  For 
example, you could make all function names start with a capital letter, all 
names of variables start with a lowercase letter, all names of constants 
and structures uppercase, and so on. 

 
C++ compilers allow very long names — up to at least 30 characters. But names 
that are too long clutter the code and actually make it harder to read. 
 

2.8 Syntax and Style 
 
Normally, you have to keep preprocessor directives, double-slash comments, and 
text within quotes on the same line.  Aside from that, the compiler uses line breaks, 
spaces and tabs only to separate consecutive words, and one space works the same 
way as 100 spaces.  The redundant white space (spaces, tabs and line breaks) is 
ignored.  So our Dictionary program might have been written as follows: 
 
#include <iostream.h> 
#include <fstream.h> 
#include "apvector.h" 
#include "apstring.h" 
struct ENTRY{apstring word; apstring translation;};const int MAXWORDS 
=1000;bool LoadDictionary(apstring fileName,apvector<ENTRY> &dict); bool 
FoundWord(const apvector<ENTRY> &dict,const apstring &word, 
apstring &translation);int main(){apvector<ENTRY> dict(MAXWORDS); 
apstring word,translation;bool ok,quit;ok=LoadDictionary 
("DICT.DAT",dict);if(!ok){cout <<"*** Cannot load dictionary ***\n"; 
return 1;}quit=false;while(!quit){cout<< 
"Enter a word or 'q' to quit ==> ";cin>>word ; cin.ignore( 
80,'\n');if (word == "q")quit=true;else if(FoundWord(dict,word, 
translation))cout << translation << "\n\n";else cout<<word<< 
" –– not in the dictionary.\n\n";}return 0;} 
 
           // End of main program 
 
... 
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It would still compile and execute correctly.  But although some people may insist 
that it makes as much sense as before, most would agree that it becomes somewhat 
less readable. 
 
Arranging your code on separate lines, inserting blank lines, and 
indenting fragments of code is not required by the compiler — it is a 
matter of stylistic convention. 

 
More or less rigid stylistic conventions have evolved among software 
professionals, and they must be followed to make programs readable and 
acceptable to the practitioners of the trade. 
 
As we have mentioned above, programmers also have freedom in using comments 
and in choosing names for their structures, functions and variables.  This is, pretty 
much, the limit of their stylistic freedom.  The rest of the program text is governed 
by a set of very strict rules — the syntax rules of the programming language. 
 
As opposed to English or any other natural language, programming languages have 
virtually no redundancy.  Redundancy is a term from information theory that 
refers to less-than-optimal expression or transmission of information; redundancy 
in language or code allows the reader to interpret a message correctly even if it has 
been somewhat garbled.   Forgetting a parenthesis or putting a semicolon in the 
wrong place in an English paragraph may hinder reading for a moment, but it does 
not usually affect the overall meaning.  Anyone who has read a text written by a 
six-year-old can appreciate the tremendous redundancy in natural languages, 
which is so great that we can read a text with no punctuation and most words 
misspelled. 
 
Not so in C++ or any other programming language, where almost every character 
is essential.  We have already mentioned that in C++ all names and reserved words 
have to be spelled exactly right with the correct rendition of the upper- and 
lowercase letters.  In addition, every punctuation mark or symbol in the program 
has a precise purpose; omitting or misplacing one symbol leads to an error.  At the 
beginning, it is hard to get used to this rigidity of syntax. 
 
The compiler catches most syntax errors, but in some cases it has trouble 
diagnosing the problem precisely.  For example, braces in a C++ program are 
logical marks that set blocks of code apart from each other. Suppose we have 
accidentally omitted one closing brace on line 45 in the Dictionary program: 
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int main() 
 
{ 
    apvector<ENTRY> dict(MAXWORDS); 
    apstring word, translation; 
    bool ok, quit; 
 
    // Load the dictionary from the file 
 
    ok = LoadDictionary("DICT.DAT", dict); 
    if (!ok) { 
        cout << "*** Cannot load dictionary ***\n"; 
        return 1; 
    } 
         
    ... 

 
When we compile the program, the compiler can tell that something is not right but 
cannot figure out where the missing brace was supposed to be.  Indentation could 
help a programmer to locate and fix the missing brace, but the compiler zooms 
right by.  As a result, the compiler generates the following output: 
 
Warning dict.cpp 49: Unreachable code in function main() 
Error dict.cpp 68: Improper use of typedef 'bool' in function main() 
Error dict.cpp 68: Statement missing ; in function main() 
Error dict.cpp 124: Compound statement missing } in function main() 
Warning dict.cpp 124: Function should return a value in function main() 

  As you can see, the compiler finally detected a missing brace — on line 124! 
(The numbers refer to the line numbers in the source code.) 
 
Notwithstanding the compiler’s somewhat limited capacity to diagnose your 
syntax errors precisely, you can never blame the compiler for errors.  You may be 
sure that there is something wrong with your code if it does not compile correctly. 
 
Unfortunately, the converse is not always true: the program may compile correctly 
but still contain errors — “bugs.” The compiler certainly won’t spot logical 
mistakes in your program.  And just as a spell-check program will not notice if you 
type “wad” instead of “was” or “you” instead of “your,” a compiler will not find 
errors that it can mistake for something else.  So it is easy to make a minor syntax 
error that conforms to all the syntax rules but happens to change the meaning of 
your code.   
 
Let’s take an example from the FoundWord(…) code.  Suppose we inadvertently 
slip an extra semicolon into our code: 
  

This closing brace has been 
accidentally omitted. 
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bool FoundWord(const apvector<ENTRY> &dict, 
               const apstring &word, apstring &translation) 
 
// Finds a word in the dictionary. 
 
{ 
    bool found = false; 
    int i, len = dict.length(); 
 
    for (i = 0;   !found && i < len;   i++); { 
        if (dict[i].word == word) { 
            translation = dict[i].translation; 
            found = true; 
        } 
    } 
    return found; 
} 
 

 
The program still compiles correctly because the syntax allows a semicolon after a 
for(…) statement.  (We will cover the for loop in Section 7.2. For now, just keep 
in mind that a semicolon after a statement generally marks the end of that 
statement.)  But the meaning of the program has changed.  Our true intention is to 
repeat all the statements inside the braces until we find a word or finish scanning 
through the whole dictionary.  We have indented these statements to remind 
ourselves that they are inside the for loop.  Instead, the semicolon after for(…) is 
interpreted as an “empty” statement — nothing to repeat, except the for statement 
itself.  As a result, the program compiles and runs, but cannot find any words in the 
dictionary. 

a a a 

C++ syntax is not very forgiving and may frustrate a novice.  The proper response 
is attention to detail.  Beginners can usually save time by carefully reading their 
code a couple of times before running it through the compiler.  Get in the habit of 
checking that semicolons, braces, equal signs and other punctuation marks are 
where they should be. 
 

2.9 Statements, Blocks, Indentation 
 

C++ code consists mainly of declarations, definitions, and statements.  
Declarations and definitions describe and define objects; statements describe 
actions. 
 

 An unintended 
    semicolon 
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Declarations and statements in C++ are usually terminated with a 
semicolon; statements are grouped into blocks using braces {  }.  
Semicolons should not be omitted before a closing brace. 

 
Semicolons are only required after the closing brace in a few situations, which we 
will learn later. 
 
Braces divide the code into nested blocks.  Statements within a block are usually 
indented by a fixed number of spaces or one tab.  In this book we indent nested 
blocks by four spaces.  The blocks are used to indicate that a number of statements 
form one compound statement that belongs in the same control structure, for 
example an iteration (for, while, etc.) loop or a conditional (if) statement.  The 
outer block is always the body of a function.   Figure 2-4 shows two nested 
blocks within a function. 
 
 
bool FoundWord(const apvector<ENTRY> &dict, 
               const apstring &word, apstring &translation) 
{ 
    bool found = false; 
    int i; 
 
    for (i = 0;   !found && i < dict.length();   i++) { 
        if (dict[i].word == word) { 
            translation = dict[i].translation; 
            found = true; 
        } 
    } 
    return found; 
} 

 
 Figure 2-4.   Nested blocks in the body of a function 
 
 
There are different styles of placing braces.  Some programmers prefer placing 
both opening and closing braces on separate lines, as follows: 
 
    ... 
    for (i = 0;   !found && i < dict.length();   i++) 
    { 
        if (dict[i].word == word) 
        { 
            translation = dict[i].translation; 
            found = true; 
        } 
    } 
    ... 
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This way it is easier to see the opening brace but easy to put, by mistake, an extra 
semicolon before it. 
 
Another important way to improve the readability of your code is by spacing lines 
vertically.  Use special comment lines and blank lines to separate sections, blocks, 
and procedural steps in your code. 
 

2.10 Input and Output 
 
In C++ input and output is implemented by means of stream I/O classes.  A class 
is a key C++ concept and many elements of the C++ syntax are associated with 
defining and using classes.  Classes are introduced in Part 2.  Like standard library 
functions, stream I/O classes are not, strictly speaking, a part of the C++ syntax; 
they are built on top of it and form an attachment that has become standard. 
 
The term stream has its origins in operating systems, such as UNIX and MS DOS.  
It refers to the abstract model of an input or output device in which an input device 
produces a stream of characters and an output device receives a stream of 
characters.  Some input/output devices, such as a keyboard or a printer, are rather 
close to this abstract model.  Ignoring the technical details we can say that a 
keyboard produces an input stream of characters and a printer receives and prints 
an output stream.  Other devices, such as a personal computer screen or a hard 
disk, are actually random-access devices, not “stream” devices: software can write 
a character or even an individual pixel to any location on the screen or transfer a 
whole block of bytes to or from any sector on disk.  Still, output to the screen or 
input/output to an ASCII disk file can be implemented as a logical stream with the 
help of the operating system software.  For example, when we read from a disk 
file, the input is buffered so that characters are read into the program not directly 
from a disk but from an intermediate buffer in memory.  
 
The C++ stream I/O class library provides two ready-to-use classes: one 
for input, called standard input, and one for output, called standard 
output.  We can think of standard input as the keyboard and standard 
output as the computer screen.  The name of the standard input in 
programs is cin and the name of the standard output is cout. 

 
cin and cout are defined in the header file iostream.h which is normally 
included at the top of the program: 
 
#include <iostream.h> 
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Until you learn the C++ syntax for classes, you can simply imitate available 
examples for using cin and cout. 
 
C++ programmers say that the output operation inserts data into an output stream.  
The stream insertion operator is denoted by the << symbol, as in: 
 
    cout << ... 

 
The input operation extracts data from an input stream.  The stream extraction 
operator is denoted by the >> symbol: 
 
    cin >> ... 

 
We can extract numbers as well as characters from an input stream because the 
software routines that implement the class can convert a string of decimal digits 
into a binary number.  Likewise, we can insert a number into the output stream.  
Then the class routines convert the internal binary representation of the number 
into a string of digits. 
 
In the following fragment from the Dictionary program, the first statement shows a 
prompt on the screen and the second statement reads a word entered by the user: 
 
        cout << "Enter a word or 'q' to quit ==> "; 
        cin >> word;             // Read one word 

 
A prompt is a message or symbol that indicates to the user that the program is 
waiting for input.  In the above output statement the prompt message is between 
double quotes.  The second statement extracts a string of characters from cin and 
puts it into word.  Another statement: 
 
            cout << translation << "\n\n"; 

 
outputs translation to the screen.  The \n symbol stands for the newline 
character, so "\n\n" ends the output line and leaves an additional blank line on 
the screen.  As you can see, several << operators can be chained together in one 
statement.  The same is true for >> operators.  

a a a 

We can use the same >> operator for reading files.  First we have to open an 
existing file with a given name for reading and associate it with an input stream.  
In the following statement, apstring fileName contains the file name and 
inpFile is the name that a programmer has given to the input stream associated 
with the file: 
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    ... 
    // Open dictionary file: 
 
    ifstream inpFile(fileName.c_str()); 
 
        // Declare an input file stream inpFile associated 
        //   with a file whose name is in the apstring fileName. 
    ... 

 
Now we can use the >> operator to read data from the file.  For example: 
 
        ... 
        inpFile >> word >> translation; 
        ... 

 
(Likewise, we can create a new file with a given name and associate it with an 
output stream.  We can then write data into the file using the << operator.) 
 
File I/O classes are defined in the header file fstream.h. 
 

2.11 Lab: Compile and Run 
 
Add some comments to the dictionary program.  Create a project that combines the 
Dictionary program and the apstring class.  Build and run the program.  Make 
sure  the data file DICT.DAT is placed in the current directory and is accessible to 
the program.  Test whether the program reacts gracefully to error conditions, such 
as when the DICT.DAT file is not found.  Create a small dictionary file for another 
language, name it DICT.DAT, and run the program again (without recompiling) to 
demonstrate that it works with different data files. 
 

2.12 Summary 
 
The text of a program is governed by rigid rules of syntax and style.  The syntax is 
checked by the compiler, which does not allow a program with syntax errors to 
compile.  The style is intended to make programs more readable and, even though 
it is not checked by the compiler, plays a very important role in producing 
acceptable code. 
 
Comments complement the program code, document functions, and explain 
obscure places in the code.  Comments can be also used to “comment out“ 
(temporarily disable) statements in the program.  
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The text of the program contains reserved words, which are used for a particular 
purpose in the language, as well as some names determined by the programmer.  
C++ is case-sensitive, so all words must be spelled with upper- and lowercase 
letters rendered correctly.  All reserved words use lowercase letters. 
 
A program consists of functions and must have a function called main(), which 
gets control first.  Functions must be declared before they can be used.  This is 
accomplished by placing function prototypes somewhere near the top of the 
program.  The actual function code is called the body of the function.  It is placed 
inside braces in the function definition. 
 
A programmer gives names to functions, variables, and constants, trying to choose 
names that make the program more readable.  Names may contain letters, digits, 
and the underscore character.  They cannot start with a digit. 
 
C++ provides a vast collection of preprogrammed functions and classes, grouped 
in the standard library and in the class libraries.  Prototypes for library functions 
and class definitions are contained in header files which are included into your 
program using the #include preprocessor directive. 
 
Program code consists mostly of declarations and executable statements, which are 
normally terminated with a semicolon.  The statements may be organized in nested 
blocks placed within braces.  Inner blocks are usually indented in relation to the 
outer block. 
 
C++ syntax is not very forgiving and may frustrate a novice — there is no such 
thing as “just a semicolon.” 
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3.1 Discussion 
 
In the early days of computing, programmers referred to memory locations by their 
exact numeric addresses in the computer memory.  A programmer had to 
remember the addresses and how each location was used — a very tedious process.  
C++ and other high-level languages let programmers refer to memory locations 
using symbolic names called variables.  The programmer gives his variables 
meaningful names that reflect their role in the program.  The compiler takes care of 
all the details — allocation of memory space for the variables and representation of 
data in the computer memory. 
 
The term “variable” is borrowed from algebra because, as in algebra, variables can 
assume different values and can be used in expressions.  The analogy ends there, 
however.  In a computer program, variables are actively manipulated by the 
program.  A variable may be compared to a slate on which the program can, from 
time to time, write a new value and from which it can read the current value.  For 
example, a statement 
 
    a = b + c; 

 
does not represent an algebraic equality, but rather a set of instructions: 
 

1. Get the current value of b; 
2. Get the current value of c; 
3. Add the two values; 
4. Assign the result to a (write the result into a). 

 
The same is true for 
 
    a = 4 – a; 

 
It is not an equation, but a set of instructions for changing the value of a: 
 

1. Take the current value of variable a; 
2. Subtract it from 4; 
3. Assign the result to a (write the new value into a). 

 
In C++, a statement 
 
    someName = expression; 
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represents an assignment operation which evaluates (finds the value) of the 
expression on the right side of the = sign and assigns that value to (writes it into) 
the variable someName.  The '=' sign in C++ is pronounced “gets the value of.”  
(If you want to compare two values, use another operator, ==, to mean “is equal 
to.” ) 

a a a 

C++ recognizes different data types of variables depending on what kind 
of data they can contain.  A variable of type int, for example, represents 
an integer, and a variable of type double represents a real number. 

 
A data type is a logical notion used in programming languages — the computer 
memory itself is just a uniform sequence of bits and bytes, 0's and 1's. The data 
types help the compiler check the code for errors and allow more efficient 
computations. 
 
The goal of this chapter is to learn the following concepts and elements of C++ 
syntax: 
 

• The syntax and placement of variable declarations; 
• Built-in data types; 
• typedef (used to rename data types); 
• Literal and symbolic constants; 
• Initialization of variables in declarations; 
• Some elements of output formatting; 
• The scope of variables and symbolic constants. 

 

3.2 Case Study: Fastfood, a Point-of-Sale Program 
 
To illustrate the use of variables and symbolic constants let us create a miniature 
POS (Point of Sale) system.  POS is just a fancy industry term for a computerized 
cash register.  We will implement a POS program for a fast food restaurant which, 
at least at the beginning, sells only two types of sandwiches — hamburgers and 
cheeseburgers. 
 
A brief session with our program will look as follows: 
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Next item (0 to quit) ==> 1h                                         � 
Next item (0 to quit) ==> 0 
Total:         1.19 
Sales tax:     0.06 
Total due:     1.25 
==> 2.00 
Change:        0.75 
 
Another customer (y/n)? y 
Next item (0 to quit) ==> 2c 
Next item (0 to quit) ==> 3h 
Next item (0 to quit) ==> 0 
Total:         6.35 
Sales tax:     0.32 
Total due:     6.67 
==> 10 
Change:        3.33 
 
Another customer (y/n)? n 
 

The bold font shows the user’s input.  'h' stands for hamburger and 'c'  for 
cheeseburger.  The program calculates the total, adds the sales tax, and calculates 
change from the paid amount. 
 
We can begin designing this program by first taking a very general view of the 
task, then gradually filling in the details.  We split the program task into large 
subtasks.  Then each subtask is split into smaller subtasks or steps, and so on.  This 
approach is called top-down program design and step-wise refinement.  In our 
POS program, the task can be split into three steps: 
 

1. Take the customer’s order. 
2. Add sales tax. 
3. Collect the payment. 

 
We may decide to implement the first and third steps as separate functions.  Let’s 
call them TakeOrder and GetPayment.  The second step can be accomplished in 
just one line of code, which we can implement inside the GetPayment function.  
The TakeOrder and GetPayment functions are called from main(): 
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  FASTFOOD.CPP    � 
/* FASTFOOD.CPP 
 
    This program implements a POS system for a fast food 
    restaurant. 
  
    Author: B. King 
    Rev. 1.0     04/15/98 
*/ 
 
#include <iostream.h> 
 
// Function prototypes 
double TakeOrder(); 
void GetPayment(double amt); 
 
//**************************************************************** 
//***********                 Main              ****************** 
//**************************************************************** 
 
int main() 
 
{ 
    char nextCustomer; 
    double amt; 
 
    nextCustomer = 'y'; 
    while (nextCustomer == 'y') { 
        amt = TakeOrder(); 
        if (amt > 0.) 
            GetPayment(amt); 
        cout << "Another customer (y/n)? "; 
        cin >> nextCustomer; 
    } 
    return 0; 
} 
 
... 
... 
 

 
The calls to TakeOrder() and GetPayment(…) are placed inside a while loop 
that keeps repeating the statements in it until the user answers “n” to the “Another 
customer (y/n)?” question. 
 
The TakeOrder() function accepts the customer’s order and returns the total 
purchase amount.  The GetPayment(amt) function adds the sales tax, receives 
the cash amount handed in by the customer and calculates change.  The code for 
these functions will be discussed later. 



54 PART 1 ~ PROGRAMS: SYNTAX AND STYLE 

 
3.3 Declarations of Variables 

 
The main() function above uses two variables: nextCustomer and amt.  
nextCustomer receives a 'y' or 'n' value from the user.  A 'y' input indicates that 
the program should process the next customer; any other input breaks the while 
loop and terminates the program.  The amt variable holds the dollar amount of the 
order. 
 
All variables must be declared before they can be used. 

 
In the POS program this is accomplished by the following declarations: 
 
    ... 
    char nextCustomer; 
    double amt; 
    ... 

 
char and double are reserved words.  They are examples of C++ built-in data 
types: variables of the char type may hold one character, and the double type is 
for double-precision real numbers. 
 
The general format of a declaration is 
 
    sometype someName; 

 
where sometype defines the type of the variable (a built-in data type for now, but it 
can also be a user-defined data type,  as explained later), and someName is the 
name given by the programmer to his particular variable.  Several variables of the 
same type may be declared together.  For example: 
 
    double amt1, amt2, amt3; 

 
A variable can be declared only once within its scope (scope refers to the space in 
the program where the variable is “visible” — see Section 3.10). 
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3.4 Data Types 
 
C++ has the following eleven built-in types designated by reserved words: 
 

char           unsigned char 
int            unsigned int 
short          unsigned short 
long           unsigned long 
float 
double 
long double 

 
Because variables of different types occupy different amounts of memory 
space, we say that they have different sizes. 

 
The exact implementation of types depends on the computer system, compiler, and 
operating environment.  In the 16-bit architecture, for example, the int type may 
be implemented as a two-byte (16-bit) memory location (the same as a short).  
The most significant bit represents the sign of the number.  In this case, its range is 
between –215 and 215–1.  These are useful numbers to remember: 
 
–215  = –32768 

215–1 =  32767 

 
In the 32-bit architecture the int type is usually implemented as a four-byte 
(32-bit) memory location. 
 
Table 3-1 summarizes the common implementation and use of built-in types.  
char, int, short,  long, and the corresponding unsigned types are collectively 
called integral types. 
 
In this book we will mostly use the char, int, and double data types. 

 
You can find the sizes of different types for your compiler and environment by 
using the C++  sizeof(x) operator, where x may be the name of a data type or of 
a particular variable.  The following program, for example, will print out a table of 
sizes for four common types: 
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TYPE SIZE USE 

 
 
char 

 
1 byte  

 
One character, or a small integer in the range 
from  –128 to 127. 
 

unsigned 
char 

1 byte  A small non-negative integer in the range from 
0 to 255 or one byte of memory. 
 

int 2 or 4 bytes An integer in the range from –215 to 215–1 or 
from –231 to 231–1, respectively. 
 

unsigned 
int 

2 or 4 bytes A non-negative integer in the range from 0 to 
216–1 or from 0 to 232–1. 
 

short 2 bytes An integer in the range from –215 to 215–1. 
 

unsigned 
short 

2 bytes A non-negative integer in the range from 0 to 
216–1. 
 

long 4 or 8 bytes An integer in the range from –231 to 231–1 or 
from –263 to 263–1. 
 

unsigned 
long 

4 or 8 bytes A non-negative integer in the range from 0 to 
232–1 or from 0 to 264–1. 
 

float 4 bytes A real number in floating point representation. 
 

double 8 bytes A double-precision real number in floating  
point representation. 
 

long double 10, 12 or 16 
bytes 

An extended-precision real number in floating  
point representation. 
 

 
Table 3-1.   Built-in Data Types 
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   SIZE.CPP              � 
// SIZE.CPP 
// 
// Prints out the size of int, long, float and double 
 
#include <iostream.h> 
 
int main() 
 
{ 
    cout << endl; 
    cout << "TYPE  SIZE " << endl; 
    cout << "–––––––––– " << endl; 
    cout << "int    " << sizeof(int) << endl; 
    cout << "long   " << sizeof(long) << endl; 
    cout << "float  " << sizeof(float) << endl; 
    cout << "double " << sizeof(double) << endl; 
 
    return 0; 
} 

 
C++ compilers also provide a special header file, limits.h, which defines the 
ranges for integral types, and another header file, float.h, which provides useful 
constants for floating-point types. 
 
It is a programmer’s responsibility to make sure that the results of computations fit 
within the range of the selected type and that precision is adequate for the floating 
point computations. 
 

3.5 Renaming Data Types with typedef 
 
C++ provides the typedef statement for naming new data types.  For example, a 
statement in your program: 
 
typedef unsigned char BYTE; 

 
can introduce a new type name, BYTE, for the unsigned char type.  Then, the 
declarations 
 
    unsigned char b; 

and 
    BYTE b; 

 
become identical and can be used interchangeably. 
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Sometimes it is desirable to use an alias (an abstract name) for a data type, because 
that lets you change the type for all variables that are used for a particular purpose 
using only one typedef statement.  In our POS program, for example, we could 
use the alias MONEY for the double type and declare all variables that represent 
dollar amounts with the MONEY type: 
 
... 
typedef double MONEY; 
 
... 
int main() 
 
{ 
    MONEY amt; 
    ... 

 
typedef statements are usually placed near the top of the program or in your own 
header file, which you can include by using #include. 
 

3.6 Constants 
 
Constants represent memory locations whose values do not change while the 
program is running.  Your source code may include literal constants and symbolic 
constants. Examples of literal constants are decimal representations of integers and 
real numbers and characters in single quotes, for example: 
 

'y', 'H'        — characters; 
 7,  –3         — integers; 
 1.19, .05, 12. — float or double numbers. 

 
Character constants also include a special set of non-printable characters that are  
sometimes called escape characters (the term derived from printer control 
commands).  Escape characters are represented in C++ by an alias — a designated 
printable character — preceded by a backslash.  The escape characters include: 
 
    \a alert (bell) 
    \t tab 
    \n newline (line feed) 
    \r carriage return 
    \f form feed 
    \' single quote 
    \" double quote 
    \\ backslash 
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For example, an output statement 
 
    cout << "Change: " << ’\a’ << change << endl; 

 
inserts a “bell” into the output. This will normally sound the speaker on a personal 
computer in addition to displaying the dollar amount of change on the screen. 
 
Symbolic constants are named by the programmer and are declared in a manner 
similar to variables, except that the declarations are preceded by the reserved word 
const and some value must be assigned to the constant.  For example: 
 
const double hamburgerPrice = 1.19; 

 
The general form of symbolic constants' declarations is 
 
const sometype name1 = value1, name2 = value2,...; 

 
where sometype is a data type (a built-in data type or a previously defined type) 
followed by a list of symbolic names with their values.  A constant may be also 
initialized to some expression, but the expression must contain only constants, 
either literal constants or previously declared symbolic constants.  For example: 
 
const double hamburgerPrice = 1.19; 
const double cheeseburgerPrice = hamburgerPrice + .20; 

 
Or: 
 
const double hamburgerPrice = 1.19, 
             cheeseburgerPrice = hamburgerPrice + .20; 

 
It may seem, at first, that symbolic constants are redundant and we can simply use 
their literal values throughout the program.  For example, instead of writing 
 
    ... 
    const double taxRate = .05; 
    ... 
    taxAmt = amt * taxRate; 

 
we could simply write 
 
    ... 
    taxAmt = amt * .05;     // Sales tax rate = 5% 
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The most important reason for using symbolic constants is easier 
program maintenance.  If the program is modified in the future and the 
value of a constant has to be changed, only the constant declaration has 
to be changed by the programmer. 

 
A programmer who uses literal constants will have to search through the whole 
source code and replace the old value with the new one wherever it occurs. This is 
tedious and can easily cause errors. 
 
Another advantage of symbolic constants is that they may make the code more 
readable and self-explanatory if their names are well chosen.  The name can 
explain the role a  constant plays in the program, making additional comments 
unnecessary. 
 
It is also easier to change a symbolic constant into a variable if a program 
modification requires that.  For example, in a simplified version of the Fastfood 
program, we can declare prices as constants.  In a later upgrade, we can simply 
remove the const specifier and add a function for setting new prices. 
 
Symbolic constants, like variables, are declared with a particular data type and are 
defined only within their scope.  This introduces more order into the code and 
gives the compiler additional opportunities for error checking — one more reason 
for using symbolic constants. 
 
On the other hand, there is no need to clutter the code with symbolic names 
assigned to universal constants such as 0 or 1 if these values inherently belong in 
the code. 
 

3.7 Initialization of Variables 
 
In C++ a variable’s declaration may also initialize it to some value.  For example: 
 
    double totalAmt = 0.; 
    char sandwich = 'h'; 

 
In a more general form, a variable may be initialized to the value of an expression.  
The expression may include literal constants (e.g. numbers) and previously 
initialized symbolic constants and variables.  For example: 
 
    double change = moneyIn – amtDue; 
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The variable change may be initialized this way only if moneyIn and amtDue 
have already received valid values. 
 

3.8 Case Study: Fastfood Continued 
 
We are now ready to complete our fast food restaurant POS system by adding in 
the prices of sandwiches and the TakeOrder() and GetPayment(…) functions.  
The completed program looks as follows: 
 

  FASTFOOD.CPP    � 
/* FASTFOOD.CPP 
 
    This program implements a POS system for a fast food 
    restaurant. 
  
    Author: B. King 
*/ 
 
#include <iostream.h> 
 
double TakeOrder(); 
void GetPayment(double amt); 
 
//**************************************************************** 
//***********                Prices              ***************** 
//**************************************************************** 
 
const double hamburgerPrice = 1.19, 
             cheeseburgerPrice = hamburgerPrice + .20; 
 
//**************************************************************** 
//***********                 Main              ****************** 
//**************************************************************** 
 
int main() 
 
{ 
    char nextCustomer = 'y'; 
    double amt; 
 
    while (nextCustomer == 'y') { 
        amt = TakeOrder(); 
        if (amt > 0.) 
            GetPayment(amt); 
 

Continued    ® 



62 PART 1 ~ PROGRAMS: SYNTAX AND STYLE 

        cout << "Another customer (y/n) ? "; 
        cin >> nextCustomer; 
    } 
    return 0; 
} 
 
//**************************************************************** 
//***********        TakeOrder, GetPayment           ************* 
//**************************************************************** 
 
double TakeOrder() 
 
// Allows the operator to enter menu items. 
// Returns the total order amount. 
 
{ 
    double totalAmt = 0.; 
    int howMany; 
    char sandwich = '?'; 
 
    // Repeat while sandwich is not equal to blank 
    while (sandwich != ' ') { 
 
        // Prompt for the next item 
        cout << "Next item (0 to quit) ==> "; 
 
        // Input the number and type of sandwich 
        cin >> howMany; 
        if (howMany > 0) 
            cin >> sandwich; 
        else 
            sandwich = ' '; 
 
        // Add the price to the total amount 
        if (sandwich == 'h') 
            totalAmt = totalAmt + hamburgerPrice * howMany; 
        else if (sandwich == 'c') 
            totalAmt = totalAmt + cheeseburgerPrice * howMany; 
    } 
 
    return totalAmt; 
} 
 
//**************************************************************** 
 

Continued    ® 
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void GetPayment(double amt) 
 
// Displays order total, sales tax, and total amount due; 
//   calculates change. 
 
{ 
    const double taxRate = .05;         // Sales tax rate = 5% 
    double taxAmt, moneyIn; 
 
    cout << "Total: " << amt << endl; 
    taxAmt = amt * taxRate; 
    cout << "Sales tax: " << taxAmt << endl; 
    amt = amt + taxAmt; 
    cout << "Total due: " << amt << endl; 
    cout << "==> "; 
    cin >> moneyIn; 
 
    double change = moneyIn – amt;  // Declared and initialized here. 
    cout << "Change: " << change << endl << endl; 
} 

 
 
The TakeOrder() function uses three variables.  double totalAmt is 
initialized to 0.; as items are added to the order, their prices are added to 
totalAmt. 
 
int howMany holds the requested number of sandwiches, and char sandwich 
indicates the kind of sandwich, 'h' or 'c'.  The function prompts the user for the 
next item and adds it to the order.  This step is repeated inside the while loop until 
the user enters 0 for the number of sandwiches.  Then the program sets the value of 
sandwich to ' ' (blank space) to indicate that the order is completed and it is 
time to break out of the while loop. 
 
The GetPayment(…) function takes the dollar amount of the order as its 
argument.  It displays that amount, calculates and displays the sales tax, displays 
the total due, and  prompts the user to enter the amount paid.  It then calculates and 
displays the amount of change.  This function uses a constant taxRate and two 
variables, taxAmt and moneyIn.  The third variable, change, is declared near the 
end of the function code. 
 
In C++ variables can be declared at any reasonable place in the code, but 
it is better, at least at the beginning, to declare all variables at the top of 
the function body. 

 
We have declared change near the end only to demonstrate that this is allowed, as 
long as a variable has not been used anywhere above its declaration. 
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3.9 Output Formatting 
 
If you compile and run the above code, you will see that the GetPayment(…) 
function produces ugly output because the dollar amounts are displayed with 
different numbers of digits after the decimal point.  C++ provides ways to control 
the format of numbers inserted into the output stream (that is, printed out with the 
cout << operator).  This is accomplished by using control elements inserted into 
the output, called I/O manipulators.  Actually we have already used one 
manipulator, endl, to indicate the end of a line in the output.  Here we introduce 
two more manipulators: setw(d) and setprecision(d).  These require a 
special header file, iomanip.h, that must be included into your program after 
iostream.h, as follows: 
 
... 
#include <iostream.h> 
#include <iomanip.h> 
... 

 
setw(d) sets the width of the output field to d and can be used to align numbers 
in the output.  The width setting remains in effect only for the next output item.  
setprecision(d) sets the number of digits after the decimal point for floating 
point numbers.  This setting remains in effect until changed.  We also need to set 
special format flags, showpoint and fixed, which tells cout always to show the 
decimal point and the trailing zeroes in floating point numbers (if, for example, we 
want to see 4.00 rather than 4): 
 
cout.setf(ios::showpoint | ios::fixed); 

 
Most compilers right-justify the output value in its output field by default.  But 
some compilers may need a special instruction to right-justify the output: 
 
cout.setf(ios::right, ios::adjustfield); 

 
By using these tools (without going too deeply into their meaning or syntax at this 
time) we can achieve a prettier output: 
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  FASTFOOD.CPP   � 
... 
#include <iostream.h> 
#include <iomanip.h> 
 
... 
 
void GetPayment(double amt) 
 
// Displays order total, sales tax, and total amount due; 
//   calculates change. 
 
{ 
    const double taxRate = .05;         // Sales tax rate = 5% 
    double taxAmt, moneyIn; 
 
    cout << setprecision(2);   // Show two digits after the decimal 
                               //   point.  Remains in effect until 
                               //   changed. 
    cout.setf(ios::showpoint | ios::fixed); 
                               // Set flags to always show the 
                               //   decimal point and trailing zeroes. 
    // Some compilers may also require (usually default): 
    cout.setf(ios::right, ios::adjustfield); 
                               // Set flags to right–justify 
                               //   the output in its field. 
 
    cout << "Total:     " << setw(8) << amt << endl; 
    taxAmt = amt * taxRate; 
    cout << "Sales tax: " << setw(8) << taxAmt << endl; 
    amt = amt + taxAmt; 
    cout << "Total due: " << setw(8) << amt << endl; 
    cout << "==> "; 
    cin >> moneyIn; 
 
    double change = moneyIn – amt; 
    cout << "Change:    " << setw(8) << change << endl << endl; 
} 

 

3.10 Scope of Variables and Constants 
 
You have noticed that each function in the above program uses its own variables.  
Can a variable or a constant declared in one function be used in another function?  
Can a variable or a constant be declared in such a way that it is usable in several 
functions?   These questions are related to the subject of scope. 
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In C++ a variable is defined only within a certain space in the program 
called the scope of the variable. The same is true for symbolic constants. 
The scope rules work exactly the same way for variables and symbolic 
constants. 

 
Scope discipline helps the compiler to perform important error checking.  If you 
try to use a variable or constant outside its scope, the compiler detects the error and 
reports an undeclared name.  The compiler also reports an error if you declare the 
same name twice within the same scope and a warning if you try to use a variable 
before it has been assigned a value. 
 
C++ programmers distinguish local variables declared within functions 
from global variables declared outside of any function.  A beginner 
should declare all global variables near the top of the program and all 
local variables at the top of the function's code.  The scope of a global 
variable extends from its declaration to the end of the program module 
(source file).  The scope of a local variable declared at the top of a 
function extends from the declaration to the end of the function body 
(closing brace). 

 
A global variable or constant is usable in any function below its declaration.  The 
value of a global variable is maintained as long as the program is running.  For 
example, it can be set in one function and used in another function.  A global 
variable goes out of scope and its memory location is released only when the 
program finishes its execution. 
 
A local variable exists only temporarily while the program is executing the 
function where that variable is declared.  When a program passes control to a 
function, a special chunk of memory (a frame on the system stack) is allocated to 
hold that function's local variables.  When the function is exited, that space is 
released and all local variables are destroyed. 
 
(There is a way to override the temporary nature of local variables by using the 
C++ reserved word static.  A static local variable still has local scope, but its 
value is preserved between successive calls to the function.) 
 
As we mentioned earlier, local variables and constants in C++ do not have to be 
declared at the top of the function but can be declared anywhere in the function 
code.  But the rules for declarations inside nested blocks may be confusing and 
such declarations may lead to elusive “bugs.”   Some examples are presented in the 
“Advanced Scope Rules” section below, but we recommend that you skip it on 
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your first reading and simply place all declarations of local variables at the tops of 
functions. 

a a a 

It is good practice to use as few global variables and constants as possible 
and always to use different names for local and global variables. 

 
C++ allows you to use the same name for a global and a local variable, with the 
local variable taking precedence over the global one in the function where it is 
declared.  This may lead to errors that are hard to catch if you inadvertently declare 
a local variable with the same name.  Consider, for example, the following code: 
 
// BADCODE.CPP 
 
... 
const double hamburgerPrice = 1.19; // global constant 
double amt;                         // global variable 
 
void TakeOrder() 
 
{ 
    ... 
    amt = hamburgerPrice; // amt is not declared in TakeOrder(), 
                          //   so this refers to the global variable 
    ... 
} 
 
int main() 
 
{ 
    double amt;  // local variable declared here by mistake. 
                 //   It has the same name as a global variable. 
                 //   The syntax is OK, but that was not the 
                 //   intention! 
    TakeOrder(); 
    cout << amt; // output is garbage, because the value of (local) 
                 //   amt is undefined. 
    ... 
} 

 
Use global variables and constants only when they indeed represent quantities you 
will refer to throughout the program, and give them conspicuous names.  Excessive 
use of global variables is a sure sign of bad program design, because it is not 
obvious where and how they are used.  Making changes to such a program may be 
difficult. 
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It is perfectly acceptable to use the same name for local variables in 
different functions.  In fact this is a good practice if the variables 
represent similar quantities and are used in a similar way. 

 
But never try to economize on declarations of temporary local variables within 
functions and on passing arguments to functions by resorting to global variables. 
 

3.11 Advanced Scope Rules 
 
The scope of a local variable extends from its declaration to the end of the block in 
which the variable is declared. Blocks are usually delineated by braces, but implied 
blocks can also exist within if–else and for/while control structures that 
consist of one statement.  Blocks may be nested, and a variable’s scope includes 
the appropriate nested blocks. 
 
Example 1: 
 
void SyntaxError() 
 
{ 
    int a = 1;            // ==> Beginning of scope for a 
 
    while (a != 0) { 
        int b = a;            // ==> Beginning of scope for b 
        if (b != 0) { 
            int c = b;            // ==> Beginning of scope for c 
            cout << c; 
        }                         // <== End of scope for c 
        else 
            c = a; 
            // *** Syntax Error –– undeclared c *** 
            //  (used out of scope) 
    }                         // <== End of scope for b 
}                         // <== End of scope for a 

 
Nested declarations can become confusing and cause errors, especially if the same 
name is used for variables declared in different blocks.  The compiler reports an 
error if the same name is used twice in one block (at the same level), but it does 
allow the same name in different or embedded blocks and they are treated as 
totally different variables, with the innermost declaration having precedence, as 
shown in the example below: 
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Example 2: 
 
#include <iostream.h> 
 
void WrongCode() 
 
{ 
    int a; 
    int b = 0; 
 
    cout << "Enter an integer: "; 
    cin >> a; 
    if (a > 0) 
        int b = a;  // A new local variable b is declared here. 
                    //   the value of the "outer" b has not changed 
    else 
        int b = –a; // Same here. 
 
    cout << "Absolute value of " << a << " is " << b << endl; 
    // The output for b is always 0. 
} 

   
To correct the problem we have to simply eliminate the extraneous declarations: 
 
#include <iostream.h> 
 
void WorkingCode() 
 
{ 
    int a; 
    int b = 0; 
 
    cout << "Enter an integer: "; 
    cin >> a; 
    if (a > 0) 
        b = a;        // b, declared outside, is assigned a value "a" 
    else 
        b = –a; 
 
    cout << "Absolute value of " << a << " is " << b << endl; 
} 

 
The program will also work if we eliminate the outer declaration, but then we have 
to  duplicate the output statement, which is undesirable: 
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#include <iostream.h> 
 
void NotElegant()  // Working but not elegant code (with repetition)... 
 
{ 
    int a; 
 
    cout << "Enter an integer: "; 
    cin >> a; 
    if (a > 0) { 
        int b = a; 
        cout << "Absolute value of " << a << " is " << b << endl; 
    } 
    else { 
        int b = –a; 
        cout << "Absolute value of " << a << " is " << b << endl; 
    } 
} 

 

3.12 Lab:  Statistics for Fastfood 
 
Modify the FASTFOOD.CPP program to collect and report “day’s” statistics (where a 
“day” is one run of the program).  Count up the total dollar amount of sales and the 
number of customers.  Implement these quantities as local variables declared in 
main(…), initially set to 0.  Is it easy to implement the total count of sold 
sandwiches as a local variable in main(…), too? 
 
Write a separate function PrintDayTotals(…) that displays the totals, and call 
this function from the main program before exiting the program.  Also try to 
calculate and display the average payment per customer. 
 

3.13 enum Data Types 
 
Sometimes, it is convenient to introduce a special data type for integer variables 
that can take only a few different values and to refer to these values by their 
symbolic names. This is accomplished with enumerated types, which a 
programmer can define using the reserved word enum.  The syntax is illustrated in 
the following examples: 
 
enum STATUS {FAILED, OK}; 
enum COLOR {BLUE = 1, GREEN, RED = 4}; 
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In the above example, STATUS and COLOR become two new data types.  As 
opposed to built-in data types, they are called user-defined types.  The names in 
the enum list (inside the braces) become in effect new defined constants. 
 
Whenever a value is omitted in the enum constant names list, it is set, by 
default, to the previous value plus one.  The first value, if omitted, is set to 
0.   

 
FAILED and OK, for example, become defined constants of the type STATUS.  
Their actual values are 0 and 1, respectively.  BLUE, GREEN and RED become 
defined constants of the type COLOR with the respective values 1, 2, and 4. 
 
The programmer can put these definitions near the top of the program or in his 
own header file and then use them for variable and function declarations.  For 
example: 
 
... 
enum STATUS {FAILED, OK}; 
 
// *** Function prototypes *** 
 
STATUS InitializeModem();  // returns a value of the type STATUS; 
                           //   the returned value can be only 
                           //   FAILED or OK. 
... 
int main() 
 
{ 
    STATUS ret = OK;       // Declares a variable called ret of        
                           //   the type STATUS and initializes its 
                           //   value to OK. 
    ... 
    ret = InitializeModem(); 
    if (ret == OK) {       // If ret is equal to OK... 
        ... 
    } 
    ...    
} 
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3.14 Summary 
 
Variables and symbolic constants allow programmers to refer to memory locations 
by name.  Variables and constants have to be declared before they can be used.  
The declaration of a variable includes the data type of the variable and an optional 
initial value.  Several variables of the same type may be declared in the same 
declaration. 
 
sometype name1, name2, ...; 
sometype name1 = expr1, name2 = expr2, ...; 

 
Symbolic constants must be declared with some initial value, which may be an 
expression combining literal constants (e.g. numbers) and previously defined 
constants: 
 
const sometype name1 = expr1, name2 = expr2, ...; 

 
C++ has char, int, short, and long built-in data types for representing integers 
of various sizes.  char also represents single characters.  Each of these integral 
types can be used with the unsigned keyword, which is a reserved word used to 
shift the range of represented numbers into the non-negative integer range.  Real 
numbers of various size and precision are represented by the float, double, and 
long double built-in data types. 
 
C++ provides the sizeof operator, which returns the memory size (in bytes) for 
storing a particular data type or a specific variable or constant. The limits.h and 
float.h header files contain useful constants that define ranges and precision for 
integral and floating point data types. 
 
C++ also supports enumerated data types that are user-defined.  An enumerated 
type is a special case of an integer type, but variables of that type may only take a 
small number of predefined values.  The enum type definition gives symbolic 
names to these values. 
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4.1 Discussion 
 
Arithmetic expressions are written the same way as in algebra and may 
include literal and symbolic constants, variables, the arithmetic operators 
+, –, *, and /, and parentheses.  

 
The order of operations is determined by parentheses and by the rank of operators: 
multiplication and division are performed first (left to right), followed by addition 
and subtraction.  You can also use the minus symbol for negation. 
 

4.2 Data Types in Expressions 
 
C++ allows programmers to mix different data types in the same 
expression.  Each operation in the expression is performed according to 
the types of its operands, and its result receives a certain type, even if it is 
only an intermediate result in the computation. The type of the result 
depends only on the types of the operands, not their values. 

 
If the two operands have the same type, the result of the operation automatically 
gets the same type.  This has serious consequences, especially for multiplication 
and division of integers.  
 
In multiplication, the product may be much larger than each of the factors and may 
simply fall out of range.  In the following code, for example: 
 
#include <iostream.h> 
 
int main() 
 
{ 
    short a = 1000, b = 40; 
 
    long x = a * b; 
    cout << x << endl; 
    ... 
} 
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the output will be not 40000, as expected, but –25536!  This is due to the C++ 
rules for handling types in expressions.  Even though the final result, a long, is 
large enough to hold 40000, the intermediate result is a short because both 
operands, a and b,  have the type short.  A “short” number uses only two bytes 
and its value cannot exceed 215 – 1 = 32767.  When a product gets out of the 
“short” range, the most significant bit is set and interpreted as a negative sign; the 
result here is –25536 (which is actually equal to 216 – 40000). 
 
The same rule applies to division.  The output of the following program is not 0.9, 
as expected, but 0. 
 
#include <iostream.h> 
 
int main() 
 
{ 
    int a = 9, b = 10; 
 
    double x = a / b; 
    cout << x << endl; 
    ... 
} 

 
The reason is that when both operands are integers, their quotient is truncated to an 
integer first, which in this case is 0, even though the final result is declared as a 
floating point type, double. 
 
If the two operands have different types, the operand of the “smaller” type is 
promoted (i.e. converted) to the “larger” type.  All floating point types are 
considered larger than integral types, and the type which can hold values in a 
larger range is considered larger.  For example, in the following code: 
 
#include <iostream.h> 
 
int main() 
 
{ 
    double a = 9.; 
    int b = 10; 
 
    double x = a / b; 
    cout << x << endl; 
    ... 
} 

 
b is promoted (converted) to a double prior to computing the ratio, because a is a 
double.  The result will be displayed correctly as 0.9. 
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(The char data type in C++ plays a dual role: char variables can hold an ASCII 
code of a character or a small integer value.  char operands in arithmetic 
expressions are first promoted to int and the result has the int data type.) 
 
The result of the computation is automatically converted to the type of the variable 
to which it is assigned.  You have to make sure that the type of the variable is 
adequate for holding the result of the computation. 
 

4.3 Type Conversions with the Cast Operator 
 
C++ provides the cast operator for explicitly converting values from one type into 
another.  The syntax is 
 
    (sometype)expression 

  
or 
 
    sometype(expression) 

 
where sometype is the name of the data type into which you are converting the 
value,  and expression is either a constant or a variable or a parenthesized 
expression.  The first form of cast is the older form, inherited from C.  The second 
form is the newer form, introduced in C++. 
 
The following code works correctly because the types of the operands are 
explicitly “cast as” appropriate types prior to computations: 
 
#include <iostream.h> 
 
int main() 
 
{ 
    int a = 4000, b = 2000; 
 
    cout << "a * b = " << double(a) * double(b) << endl; 
    ... 
} 

 
Newer compilers support yet another form of the cast operator recently added to 
the C++ standard.  This operator, called static cast, has the form: 
 
    static_cast<sometype> (expression) 
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For example: 
 
    cout << "a * b = " 
         << static_cast<double> (a) * static_cast<double> (b) << endl; 
               // Static cast operator added to the C++ standard 

 
We will always use either the newer form of cast or the static cast operator. 
 
Your code will be safer and better documented if you indicate explicit 
type conversions using the cast operator, where necessary, rather than 
relying on implicit type conversions. 

 

4.4 Compound Assignment Operators 
 
C++ has convenient shortcuts for combining arithmetic operations with 
assignment.  The  following table summarizes the compound assignment 
operators: 
 

 Compound assignment: Is the same as: 
 
 a += b; 

 
 a = a + b; 

 
 a –= b; 

 
 a = a – b; 

 
 a *= b; 

 
 a = a * b; 

 
 a /= b; 

 
 a = a / b; 

 
For example, the following statement: 
 
    ...     
    amt = amt + taxAmt; 
    ... 

 
can be rewritten as: 
 
    ...     
    amt += taxAmt; 
    ... 

 
The latter form may seem cryptic at the beginning, but, once you get used to it, it 
becomes attractive — not only because it is more concise, but also because it 
emphasizes the fact that the same variable is being modified. 
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Similarly, the following code: 
 
    ... 
        // Add the price to the total amount 
        if (sandwich == 'h') 
            totalAmt = totalAmt + hamburgerPrice * howMany; 
        else if (sandwich == 'c') 
            totalAmt = totalAmt + cheeseburgerPrice * howMany; 
    ... 

 
is better expressed as: 
 
    ... 
        if (sandwich == 'h') 
            totalAmt += hamburgerPrice * howMany; 
        else if (sandwich == 'c') 
            totalAmt += cheeseburgerPrice * howMany; 
    ... 

 
Note that += has lower rank than the arithmetic operators, so the expression to the 
right of += is evaluated first, before the result is added to the left-hand side.  For 
example: 
 
    a += b – c;       // Same as: a = a + (b – c) 

 

4.5 Increment and Decrement Operators 
 
C++ has special increment/decrement operators (one of which gave the language 
its name).  These operators are used as shorthand for incrementing or decrementing 
an integer variable: 
 
 

 Increment/Decrement: Is the same as: 
 
 a++; 

 
 a = a+1; 

 
 a––; 

 
 a = a–1; 

 
 ++a; 

 
 a = a+1; 

 
 ––a; 

 
 a = a–1; 

 
Increment and decrement operators may be used in expressions.  That is where the  
difference between the a++ and ++a forms and between the a–– and ––a forms 
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becomes very important.  When a++ is used, the value of the variable a is 
incremented after it has been used in the expression; for the ++a form, the value of 
the variable a is incremented before it has been used.  The same is true for a–– and 
––a.  This is summarized in the table below: 
 
 

 Increment/Decrement in 
an expression: 

Is the same as: 

 
  a = b++; 
 

{ a = b; 
  b = b+1; } 

 
  a = b––; 
 

{ a = b; 
  b = b–1; } 

 
  a = ++b; 
 

{ b = b+1; 
  a = b;   } 

 
  a = ––b; 
 

{ b = b–1; 
  a = b;   } 

 
 
Consider, for example, the following program: 
 
#include <iostream.h> 
 
int main() 
 
{ 
    int a = 10, b = 20, c; 
 
    cout << "Initial values:\n"; 
    cout << "a = " << a   << " b = " << b << endl << endl; 
 
    c = a++ * ––b; 
    // The above statement works the same as the following statements: 
    // { 
    //    b = b – 1; 
    //    c = a * b; 
    //    a = a + 1; 
    // } 
 
    cout << "c = " << c << endl << endl; 
    cout << "Final values:\n"; 
    cout << "a = " << a << " b = " << b << endl << endl; 
 
    return 0; 
} 
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When compiled and executed, it generates the following output: 
 

Initial values:                                                      � 
a = 10 b = 20 
 
c = 190 
 
Final values: 
a = 11 b = 19 

 

4.6 The Modulo Division Operator 
 
In addition to four arithmetic operations +, –, *, and /, C++ has the % operator for 
integers: 
 
    a % b 

 
which is read “a modulo b,” and means the remainder when a is divided by b.  For 
example, 31 % 7 is equal to 3 and 365 % 7 is 1. If a is negative, a % b is negative 
or zero (e.g. –31 % 7 is –3 and –28 % 7 is 0).  The % operator has the same rank as 
* and  /. 
 
The compound assignment operator %= combines % with assignment.  So 
 
    a %= b; 

 
is the same as: 
 
    a = a % b; 
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4.7 Lab: Three Means 
 
x is the arithmetic mean between two numbers, a and b, if   a x x b− = − . 

The arithmetic mean is equal to   a b+
2

. 

x is the geometric mean between two positive numbers a and b, if   a
x

x
b

= . 

The geometric mean is equal to   ab . 

x is the harmonic mean between a and b, if   1 1 1 1
a x x b
− = − . 

The harmonic mean is equal to   2
1 1
a b
+

. 

 
Fill in the blanks in the following program that computes the three means: 
 

   MEANS.CPP         � 
// MEANS.CPP 
// 
// This program calculates the arithmetic, geometric and harmonic 
// means of two positive integers. 
// 
// Author: Meanie M. 
// 
 
#include <iostream.h> 
#include <math.h>       // Includes the prototype of 
                        //   the standard library function 
                        //   double sqrt(double x)–– square root of x. 
 
double ArithmeticMean (short a, short b) 
 
{ 
    return double(a+b) / 2.; 
} 
 
double GeometricMean (short a, short b) 
 
{ 
    ... 
} 

 Continued    ® 
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double HarmonicMean(short a, short b) 
 
{ 
    ... 
} 
 
int main() 
 
{ 
    short a, b; 
 
    cout << "Enter two positive integers a and b ==> "; 
    cin >> a >> b; 
    cout << "Arithmetic mean of " << a << " and " << b 
         << " = " << ArithmeticMean(a,b) << endl; 
 
    cout << "Geometric mean of " << a << " and " << b 
         << " = " << GeometricMean(a,b) << endl; 
 
    cout << "Harmonic mean of " << a << " and " << b 
         << " = " << HarmonicMean(a,b) << endl; 
 
    return 0; 
} 

 
Compile and test the program with several input values ranging from 1 to 30000.  
For example: 
 

1.  a = 1,     b = 2; 
2.  a = 3,     b = 5; 
3.  a = 20000, b = 30000. 

 
Explain the test results.  Fix bugs in the functions, if any, but do not change the 
functions’ arguments data types.  Re-test the program. 
 
Note that for a, b > 0, the values of all three means should be between a and b, and 
 

  2
1 1 2
a b

ab a b

+
≤ ≤

+  
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4.8 Summary 
 
Arithmetic expressions are written the same way as in algebra and may include 
literal and symbolic constants, variables, the arithmetic operators +, -, *, and /, 
and parentheses.  
 
The result of an arithmetic operation has the same type as the operands.  If the 
operands have different types, the operand of the “smaller” type is automatically 
converted (promoted) to the “larger” type.  (For example, an int may be promoted 
to a long or a double,  a char may be promoted to a short or an int.)  C++ 
provides a cast operator that explicitly converts a variable or constant from one 
data type into another. 
 
It is a programmer's responsibility to make sure that the values of variables and all 
the intermediate and final results in arithmetic expressions fit within the range of 
the chosen data types, and that these types satisfy the precision requirements for 
computations. 
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5.1 One-Dimensional Arrays 
 
C++ programmers can declare several consecutive memory locations of the same 
data type under one name.  Such memory blocks are called arrays, and the 
individual memory locations are called the elements of the array.  The number of 
elements is called the size of the array. 
 
Suppose we want to add soda to our fast food restaurant menu.  Suppose it comes 
in three sizes: small, medium, and large.  Instead of having a separate constant or 
variable to hold the price of each size of the drink, we can declare an array of three 
elements.  For example: 
 
double sodaPrice[3];  // array of three elements of the type double 

 
Arrays can be initialized by placing a list of values, separated by commas, within 
braces. For example: 
 
double sodaPrice[3] = {.59, .79, .99}; 

 
Individual elements of an array are accessed using indices (also called 
subscripts).  An index is an integer value placed in square brackets after 
the array name to indicate the consecutive number of the element.  In 
C++ the elements of an array are numbered starting from 0. 

 
In the above example, the three soda prices can be referred to as sodaPrice[0], 
sodaPrice[1], and sodaPrice[2], respectively. 
 
The following statements declare an array of 100 integer elements: 
 
const int MAXCOUNT = 100; 
int a[MAXCOUNT]; 

 
The elements of this array can be referred to as a[0], a[1], ... , a[99]. 
 
The power of arrays lies in the fact that a subscript can be a variable (or any 
expression).  A program can refer, for example,  to a[i], where i is some integer 
variable.  When the program is running, this is interpreted as the element of the 
array whose subscript is equal to the current value of i.  For example, if the 
variable i at some point gets the value 3 and the program accesses a[i] at that 
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point, a[i] will refer to a[3], which is the fourth element of the array (a[0] 
being the first element). 
 
The index can be any expression.  For example: 
 
const int SIZE = 100; 
int a[SIZE]; 
    ... 
    int i = 3; 
    ... 
    a[2*i] = 0; 
    a[2*i+1] = 1; 

a a a 

Let us return to our Fastfood example.  We can add the following statements to our 
program to handle small, medium and large orders of soda: 
 
... 
const double sodaPrice[3] = {.59, .79, .99}; 
 
... 
 
double TakeOrder() 
 
{ 
    ... 
    int sodaSize; 
 
    ...  
        cout << "Soda size (Small: 1; Medium: 2; Large: 3) ==> "; 
        cin >> sodaSize; 
        amt += sodaPrice[sodaSize–1]; 
          // [...–1] because the elements of the array are numbered 
          //  0, 1 and 2, while the entered value is 1, 2 or 3. 
    ... 
} 

 

5.2 The apvector Class 
 
The C++ compiler does not keep track of the size of a declared array, nor does it 
verify that a subscript value is a valid number that points to an element of the 
array. 
 
It is a programmer's responsibility to make sure that every subscript 
value falls into the valid range from 0 to size–1, where size is the size 
of the array. 
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For example, we may declare 
 
    int buffer[10]; 

 
and then write by mistake: 
 
    int i; 
    ... 
    i = 10; 
    buffer[i] = 0;  // Error! Subscripts must be in the range 
                    //   from 0 to 9. 10 is an illegal subscript 

 
We can compile and run this program, but unpredictable things including a system 
crash could happen when we set buffer[10] to 0.   This  memory location is 
actually outside of our array;  it may be used by another variable or constant, or it 
may store a function's return address! 
 
Thus the use of C++ arrays requires extra caution.  It would be desirable to have a 
mechanism that would check the subscript values while the program is running and 
warn the programmer about illegal subscripts.  The apvector class, implemented 
by the AP C++ Development Committee, provides such a mechanism.  This class 
is a subset of the vector class from the STL (Standard Template Library). 
 
The AP Committee recommends that students always use the apvector 
class instead of built-in C++ arrays.  All programming examples in this 
book follow this recommendation. 

 
We refer to standard C++ arrays as “built-in” arrays because they are a standard 
feature of the C++ programming language.  The apvector class is a helpful tool 
provided by the AP C++ Committee.  In this book we may say “array” to refer 
informally to an apvector object. 
 
In addition to checking subscripts, the apvector class offers three other 
advantages.  First, it keeps track of the size of an array and provides a function 
length() that returns the size.  With a built-in array, the programmer has to keep 
track of its size and explicitly pass it to functions that work with that array.  
Second, an apvector object can be resized.  The size of a built-in array, once 
declared, must remain constant.  Third, the actual storage for the apvector 
elements comes from a large pool of system memory called free store through a 
mechanism known as dynamic memory allocation (see Chapter 11).  That is why 
apvector objects are sometimes called “dynamic arrays.”  Local built-in arrays 
are placed on the system stack, and a large array may overflow the stack. 
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5.3 Declaring and Using apvector Variables 
 
The apvector class is designed to work with vectors of different data types: 
integers, doubles, and other types.  Such classes are called templated classes; they 
are explained in Part 2.  The code for the apvector class is placed in a header file, 
apvector.h, which  must be included at the top of your program: 
 
#include "apvector.h" 

 
At this point we need to know how to declare an apvector variable without going 
too deeply into the meaning of the required syntax (which is a bit tricky). 
 
When you declare an apvector variable you have to specify the data 
type of its elements in angular brackets and the size of the vector in 
parentheses. 

 
For example: 
 
    apvector<int> v(10);  // Declare apvector v of 10 integers. 

 
In the above declaration, apvector<int> serves as a new data type, v is the 
name of your variable, and 10 in parentheses is an “argument” that helps to 
“construct” your variable.  This declaration follows the pattern: 
 
    sometype myVar(list of arguments); 

 
When you declare a vector, you can set all its elements to the same “fill” value by 
placing that value in parentheses after the size of the array, separated by a comma.  
For example: 
 
    apvector<double> x(100, 99.9); 
        // Declare apvector x of 100 doubles. 
        // Set all its values equal to 99.9. 

 
Unlike built-in arrays, the apvector class does not let you initialize the 
elements of a  vector with a list of different values. 

 
Instead, you have to initialize the elements of a vector in separate assignment 
statements.  For example: 
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    apvector<double> sodaPrice(3); 
 
    sodaPrice[0] = .59; 
    sodaPrice[1] = .79; 
    sodaPrice[2] = .99; 

 
It rarely makes sense to declare a const vector because then all its elements will 
be set to the same value.  For example: 
 
const apvector<int> v1(100, 1); 
        // All 100 elements of vector v1 are forever set to 1. 
 

a a a 

You can access the individual elements of a vector by using subscripts in brackets 
— the same way as with built-in arrays: 
 
    x[0] = 0; 
    ... 
    x[i] = x[j]; 

 
The subscript-checking code in the apvector class aborts your program 
and displays an error message when the program uses a subscript value 
that is out of bounds. 

a a a 

The apvector class has its own assignment operator, which copies the whole 
array.  For instance, you can write: 
 
    apvector<int> a(100, 0), b; 
           // a is a vector of 100 integers initially set to 0. 
           // b is initially empty –– its size is 0. 
    ... 
    b = a; // Copy vector a into b.  The size of b is properly 
           //   adjusted to hold 100 elements. 

  
Use the assignment of vectors with discretion, because it may involve 
moving a lot of bytes in memory and make your code very inefficient.  

 
The length() function returns the size of the vector.  The size is initially set 
when the vector is declared, but it may change as a result of calling the 
resize(…) function or after an assignment.  length() is a member function of 
the apvector class;  it is called using “dot” notation.  For example: 
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    apvector<double> buffer(1000); 
    int len; 
    ... 
    len = buffer.length(); // len is set to 1000. 

 
The resize(…) function lets you change the size of the vector.  For example: 
 
    buffer.resize(2000); // Set the new size to 2000. 
 

The resize(…) function may be used when the size of the array is not known in 
advance, but is entered by the user or read from a file.  For example: 
 
    apvector<double> sample; // Declare an empty array 
                             //   (initial size is 0). 
    int n; 
 
    cout << "Please enter the size of your sample: "; 
    cin >> n; 
    sample.resize(n); 

 
If the new size is smaller than the original size, the vector’s tail is chopped off and 
the tail elements are lost. 
 

5.4 Passing apvector Arguments to Functions 
 
Functions that take apvector arguments are declared in basically the same way as 
functions with any other types of arguments.  However, the argument name in the 
prototype and in the function header is usually preceded by the & (ampersand) 
symbol.  For example: 
 
void SomeFun(apvector<int> &x); 

 
The ampersand tells the compiler that the function works with the 
original vector, not with its temporary copy.  This is essential if your 
function changes the elements (or the size) of the vector.  But even if your 
function does not change the vector, the ampersand is still very important 
because it prevents unnecessary copying of the vector.  Without it your 
program may compile and run correctly but be awfully slow. 

 
If your function does not change the vector, you can document (and enforce) that 
fact by adding the keyword const to the argument type.  For example: 
 
int AddElements(const apvector<int> &a); 
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Normally, your function will first need to retrieve the size of the array.  This is 
accomplished by calling the length() member function.  For example: 
 
int AddElements(const apvector<int> &a) 
 
// Returns the sum of the elements of the array a 
 
{ 
    int len = a.length(); 
    ... 

 
Code that accesses all the elements of an array requires a for or a while loop.  
These iterative statements are described in Chapter 7, but we can get a glimpse of 
how they work here: 
 
int AddElements(const apvector<int> &a) 
 
// Returns the sum of the elements of the array a 
 
{ 
    int len = a.length(); 
    int i = 0, sum = 0; 
 
    while (i < len) { // Repeat as long as i < len 
        sum += a[i]; 
        i++; 
    } 
    return sum; 
} 

 
Or, with the for loop: 
 
int AddElements(const apvector<int> &a) 
 
// Returns the sum of the elements of the array a 
 
{ 
    int len = a.length(), i, sum = 0; 
 
    for (i = 0;   i < len;   i++) 
        sum += a[i]; 
 
    return sum; 
} 
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5.5 Two-Dimensional Arrays 
 
Two-dimensional arrays are used to represent rectangular tables or matrices of 
elements of the same data type.  The following example shows how a 2-D array of 
“doubles” can be declared and initialized: 
 
const int ROWS = 2; 
const int COLS = 3; 
 
double a[ROWS][COLS] = { 
    {0.000, 0.111, 0.222}, 
    {1.000, 1.111, 1.222} 
}; 

 
We access the elements of a 2-D array with a pair of indices, each placed 
in square brackets.  We can think of the first index as a “row” and the 
second as a “column.”  Both indices start from 0. 

 
In the above example, 
 
    a[0][0] = 0.0;    a[0][1] = 0.111;    a[0][2] = 0.222; 
    a[1][0] = 1.0;    a[1][1] = 1.111;    a[1][2] = 1.222; 
 
 
A 2-D array is stored in a contiguous block of memory.  Its total size is the product 
of the dimensions of the array; in our example it is ROWS*COLS = 6.  The elements 
of  the array are arranged “by row.”  More precisely, for each value of the first 
index, 0, 1, ... etc. the elements with the second index changing from 0 to its 
maximum value are stored sequentially in memory.  Thus, in our example, the 
order of the elements in the computer memory is: 
 
    0.   0.111   0.222   1.   1.111   1.222 

a a a 

You can also declare three-dimensional and multi-dimensional arrays  in a manner 
similar to two-dimensional arrays.  Arrays in three or more dimensions are not 
used very often.  In this book we do not go beyond two dimensions. 
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5.6 The apmatrix Class 
 
The apmatrix class, provided by the AP C++ Development Committee, 
implements two-dimensional arrays with “safe” subscripts.  As with the apvector 
class, a program that attempts to use an out-of-bounds subscript value is aborted 
with an error message. 
 
A program that uses the apmatrix class needs to include the apmatrix.h header 
file: 
 
#include "apmatrix.h" 

 
apmatrix variables are declared similarly to apvector variables, but they are 
“constructed” with two arguments: the number of rows and the number of 
columns.  For example: 
 
apmatrix<double> table(5, 3); 
  // Declare a matrix of doubles with 5 rows and 3 columns. 

 
You can add the third argument, the “fill” value: 
 
apmatrix<char> stars(2, 80, '*'); 
  // Declare a matrix of chars with 2 rows and 80 columns, 
  //   and with all elements initially set to '*'. 

 
Instead of the length() function in the apvector class, the apmatrix class 
provides two functions for accessing the dimensions of a matrix: numrows() and 
numcols().  These member functions of the apmatrix class are called  using 
“dot” notation.  For example: 
 
int AddElements(const apmatrix<int> &m) 
 
// Returns the sum of the elements in the matrix m 
 
{ 
    int nRows = m.numrows(), nCols = m.numcols(); 
    int row, col, sum = 0; 
    ... 
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The resize(…) function takes two arguments: the new dimensions.  For example: 
 
    apmatrix<double> m;  // Declare an empty matrix 
    int nRows, nCols; 
    ... 
    cin >> nRows >> nCols;   // Read new dimensions 
    m.resize(nRows, nCols);  // Set new dimensions 

 

5.7 Lab:  Reverse an Array 
 
The following program reverses the order of the elements in an array: 
 

  REVERSE.CPP      � 
// REVERSE.CPP 
// 
// This program reverses the order of the elements in an array. 
// 
// Author: Leon Noel 
// 
 
#include <iostream.h> 
#include "apvector.h" 
 
void Reverse(apvector<int> &a); 
 
int main() 
 
{ 
    apvector<int> test(6); 
    int i; 
 
    // Set the test values in the array: 
    test[0] = 1;    test[1] = 1;    test[2] = 2; 
    test[3] = 3;    test[4] = 5;    test[5] = 8; 
 
    // Reverse the array: 
    Reverse(test); 
 
    // Display the array:  
    for (i = 0;   i < 6;   i++) 
        cout << test[i] << ' '; 
    cout << endl; 
 
    return 0; 
} 

 Continued    ® 
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void Reverse(apvector<int> &a) 
 
// Reverses the elements of the array 
 
{ 
    int i, ... 
 
    i = ... 
    j = ... 
    while(...) { 
        ... 
    } 
} 

 
Fill in the blanks and test the program.  The output should be: 
 

8 5 3 2 1 1                                                          � 

 
You can advance simultaneously from both ends of the array, swapping pairs of 
elements. Swapping two elements can be accomplished as follows: 
 
    int temp; 
    ... 
    temp = a[i]; 
    a[i] = a[j]; 
    a[j] = temp; 

 
(If  your program appears not to do anything, you may be swapping things back 
into their original places.) 
 
 For “extra credit”: 
 
Modify the above program so that it flips the elements of a square two-dimensional 
array apmatrix<int> m(SIZE,SIZE) symmetrically about the main diagonal 
(the line that connects the upper left and lower right corners).  In linear algebra this 
operation is called transposing a square matrix. 
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5.8 Summary 
 
C++ allows programmers to declare arrays — blocks of consecutive memory 
locations under one name.  An array represents a collection of related values of the 
same data type.  You can refer to the specific elements of an array by placing the 
element's subscript (index) in brackets after the array name.  A subscript can be 
any integer variable or expression.  In C++, the subscript of the first element of an 
array is 0 and the subscript of the last element is len–1, where len is the size of 
the array. 
   
Programmers can also declare and use two-dimensional and multi-dimensional 
arrays.  We can refer to an element in a 2-D array by placing two subscripts after 
the array name.  Think of the first index as a “row” and the second as a “column.”  
Both subscripts start from 0. 
 
The apvector and apmatrix classes, provided by the AP C++ Development 
Committee, implement one- and two-dimensional arrays, respectively, with “safe” 
subscripts.  Unlike built-in arrays, these classes check that the subscript values 
used by the program (while it is running) fall within the legal range, and abort the 
program with an error message if the program attempts to use an illegal subscript.  
The AP Committee recommends that students always use the apvector and 
apmatrix classes instead of built-in C++ arrays. 
 
Programs that use the apvector or apmatrix classes must include the 
apvector.h and/or apmatrix.h header files at the top of the program. 
 
The apvector and apmatrix classes are templated classes designed to work with 
different data types.  When declaring an apvector or an apmatrix variable, 
specify the data type of its elements in angular brackets and the size of the vector 
or dimensions of the matrix in parentheses.  For example: 
 
    apvector<int> v(10);     // Declare apvector v of 10 integers. 
    apmatrix<double> m(4,7); // Declare apmatrix m of doubles 
                             //   with 4 rows and 7 columns. 

 
The size (length) of the vector is returned by the length() function.  For 
example: 
 
    int len = v.length(); 
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The dimensions of a matrix are returned by the numrows() and numcols() 
functions.  For example: 
 
    int nRows, nCols; 
    ... 
    nRows = m.numrows(); 
    nCols = m.numcols(); 

 
Functions that take apvector or apmatrix arguments use the & (ampersand) 
character in their prototypes and header lines.  The ampersand is placed in front of 
each apvector or apmatrix argument to indicate that the function works with 
the original object, not its temporary copy.  The optional const keyword assures 
that the function does not change that argument. 
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6.1 Discussion 
 
The sequential flow of control from one statement to the next during program 
execution may be altered by the four types of control mechanisms: 
 

1. Calling a function. 
2. Iterative statements (loops). 
3. Conditional (if–else) statements. 
4. switch statements. 

 
We have already seen that calling a function is a convenient way to interrupt the 
sequential flow of control and execute a code fragment defined elsewhere.  We 
have also used a while loop, which instructs the program to repeat a fragment of 
code several times.  while is an example of an iterative statement; these are fully 
explained later, in Section 7.2. 
 
In this chapter we will study the if–else statement, which tells the program to 
choose and execute one or another fragment of code depending on the values of 
some variables or expressions. The if-else control structure allows conditional 
branching.  Suppose, for instance, we want to find the absolute value of an 
integer.  The function that returns an absolute value may look as follows: 
 
int abs(int x) 
 
{ 
    int ax; 
 
    if (x >= 0)      // If x is greater or equal to 0 
        ax = x;      //   do this; 
    else             // else 
        ax = –x;     //   do this. 
    return ax; 
} 

 
Or, more concisely: 
 
int abs(int x) 
 
{ 
    if (x < 0)      // If x is less than 0 
        x = –x;     //   negate x; 
    return x; 
} 
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There are special CPU instructions called conditional jumps that support 
conditional branching.  The CPU always fetches the address of the next instruction 
from a special register, which, in some systems, is called the Instruction Pointer 
(IP).  Normally, this register is incremented automatically after the execution of 
each instruction so that it points to the next instruction.  This causes the program to 
execute consecutive instructions in order. 
 
A conditional jump instruction tests a certain condition and tells the CPU to jump 
to the specified instruction depending on the result of the test.  If the tested 
condition is satisfied, a new value is placed into the IP, which causes the program 
to skip to the specified instruction (Figure 6-1).  For example, an instruction may 
test whether the result of the previous operation is greater than zero, and, if it is, 
tell the CPU to jump backward or forward to a specified address.  If the condition 
is false, program execution continues with the next consecutive instruction. 
 
 

 
 
 
 
 
M11: 
 
M13: 

... 
cmp AH,7 
je M11 
xor ax,ax 
jmp short M13 
mov CH,08h 
mov AX,' '+7*256 
rep stosw 
... 

 
; Test for BW card 
; Goto BW card init 
; Fill for graphics modes 
; Goto clear buffer 
; Buffer size on BW card (2048)
; Fill char for alpha 
; Fill the regen buffer with 
;   blanks 

 
Figure 6-1.   80x86 Assembly language code with the je (“Jump 

if Equal to 0”) instruction 
 
 
(There are also unconditional jump instructions that tell the CPU to jump to a 
specified address in the program by unconditionally placing a new value into the 
IP, for example, jmp short in Figure 6-1) 
 
In high-level languages, conditions for jumps are written using relational operators 
such as “less than,” “greater than,”  “equal to,” and so on, and the logical operators  
“and,” “or,” and “not.”  Expressions combining these operators are called logical 
or Boolean expressions in honor of British mathematician George Boole 
(1815-1864), who studied formal logic and introduced Boolean Algebra, an 
algebraic system for describing operations on logical propositions.  The value of a 
Boolean expression may be either true or false.  
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6.2 if–else  Statements 
 
The general form of the if-else statement in C++ is: 
 
    if (condition) 
        statement1; 
    else 
        statement2; 

 
where condition is a logical expression and statement1 and statement2 are either 
simple statements or compound statements (blocks surrounded by braces).  The 
else clause is optional, so the if statement can be used by itself: 
 
    if (condition) 
        statement1; 

 
When an if–else statement is executed, the program evaluates the condition and 
then executes statement1 if the condition is true and statement2 if the condition is 
false.  When if is coded without else, the program evaluates the condition and 
executes statement1 if the condition is true.  If the condition is false, the program 
skips statement1. 
 

6.3 True and False Values 
 
C++ does not have special values for “true” and “false.“  Instead, “true” 
is represented by any non-zero integer value, and “false” is represented 
by the zero value.  Thus a logical expression is simply a special case of an 
arithmetic expression: it is considered “false” if it evaluates to zero and 
“true” otherwise. 

 
A proposal is being considered by the C++ Standards Committee to add the 
“Boolean” data type bool to the C++ built-in types.  The proposal would make 
true and false — the only two values a Boolean variable can take —  reserved 
words.  The newer C++ compilers already support the bool data type.  If their 
compiler does not support the bool type, C++ programmers do it themselves.  
They might add the following definitions to their code (or place them in a header 
file): 
 
typedef int bool;        // defines bool as an alias for int 
const bool false = 0;    // defines false as 0 
const bool true = 1;     // defines true as 1 
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In this book we assume that the bool data type and the false and true constants 
are built in, but the programs on disk may contain the line 
 
#include "bool.h" 

 
BOOL.H contains the definition for the bool type and the false and true 
constants, in case your compiler does not have them.  You may comment out this 
#include line (or the definitions inside BOOL.H) if your compiler has the built-in 
bool type. 
 
After the bool type and the true and false constants have been defined, 
programmers can write declarations as follows: 
 
    ... 
    bool aVar = false; 
    ... 

 

6.4 Relational Operators 
 
C++ recognizes six relational operators: 
 

Operator Meaning 
  >  Greater than 
  < Less than 
  >= Greater than or equal 
  <= Less than or equal 
  == Is equal 
  != Is not equal 

 
In C++, the result of a relational operation has the bool (or int) type. It 
has a value equal to true (or 1) if the comparison is true and false 
(or 0) otherwise. 

 
Note that in C++ the “is equal” condition is expressed by the ==  (double  “=”) 
operator, while a single “=” means assignment. Inadvertently writing = instead of 
== renders your conditional statement worse than meaningless, without generating 
a syntax error.  However, some of the more “thoughtful” compilers do generate a 
warning against this pernicious bug. 
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Relational operators are mostly used for conditions in if statements and in 
iterative statements.  Strictly speaking, they could be used in arithmetic 
expressions, too, because they have a value of 0 or 1 and will be promoted to the 
int type; however, such usage is unusual. 
 
In C++, it is common to use integer variables or expressions as logical expressions.  
For example: 
 
    int count; 
    ... 
    if (count) 
        ... 

 
The above is a C++ idiom, which means exactly the same thing as: 
 
    int count; 
    ... 
    if (count != 0)  // if count not equal to 0 
        ... 

 

6.5 Logical Operators 
 
C++ has two binary logical operators, “and” and  “or,” and one unary logical 
operator, “not.”  They are represented by the following symbols: 
 

Operator Meaning 
 &&    and 
 ||    or 
 !    not 

 
The expression 

    condition1 && condition2 

is true if and only if both condition1 and condition2 are true. 

 
The expression 

    condition1 || condition2 

is true if either condition1 or condition2 or both are true. 
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The expression 

    !condition1 

is true if and only if condition1 is false. 

 
The following code: 
 
    bool match; 
    ... 
    if (!match) 
        ... 

 
is identical to: 
 
    bool match; 
    ... 
    if (match == false) 
        ... 

 
Like relational operators, the results of the logical operators &&, ||, and ! have the 
int (integer) data type: 1 represents true and 0 represents false. 
 
The “and,” “or,” and “not” operations are related to each other in the following 
way: 
 
 not (p and q) = not(p) or  not(q) 
 not (p or  q) = not(p) and not(q) 
 
These two formulas are called De Morgan's laws.  De Morgan's laws are 
properties of formal logic, but they are useful in practical programming as well.  In 
C++ notation, De Morgan's laws take the following form: 
 
 !(p && q) == (!p || !q) 

 !(p || q) == (!p && !q) 

 
A programmer may choose one of the equivalent forms; the choice depends on 
which form is more readable.  Usually it is better to distribute ! (“not”).  For 
example: 
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    if (size <= 0 || a[0] == –1) 
 
is much easier to read than: 
 
    if (!(size > 0 && a[0] != –1)) 

 

6.6 Order of Operators 
 
In general, all binary operators have lower precedence then unary operators, so 
unary operators, including ! (“not”), are applied first.  You have to use parentheses 
if ! applies to the entire expression.  For example: 
 
    if (!x > 0)  //   You probably wanted: 
                 //   if (!(x > 0)); 
                 //   You got: 
                 //   if ((!x) > 0); 
                  
        ... 

 
Relational operators (>, < , ==, etc.) have lower rank than all binary arithmetic 
operations (+, *, etc.), so they are applied after the arithmetic operators.  For 
example, you can write simply: 
 
    if (a + b >= 2 * n)             // OK 
        ... 

 
when you mean: 
 
    if ((a + b) >= (2 * n))         // Redundant inside parentheses 
        ...                         //   needlessly clutter 
                                    //   the code. 

 
The binary logical operators && and || have lower rank than arithmetic and 
relational operators, so they are applied last.  For example, you can write simply: 
 
    if (x + y > 0 && b != 0)        // OK 

 
as opposed to: 
 
    if ((x + y > 0) && (b != 0))    // Redundant parentheses. 

 
When && and || operators are combined in one logical expression, && has higher 
rank than || (i.e. && is performed before ||), but it is a good idea to always use 
parentheses to avoid confusion and make the code more readable.  For example: 
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    // Inside parentheses not required, but recommended for clarity: 
    if ((x > 2 && y > 5) || (x < –2 && y < –5)) 
        ... 

 
The rules of precedence for the operators that we have encountered so far are 
summarized in the table below: 
 

Highest   !   (unary)–  (cast)  ++  ––   sizeof 
   ↑   *   /   %     
       +   – 
   <   <=   >   >= 
       ==   != 
   ↓   && 
Lowest   || 

 
In the absence of parentheses, binary operators of the same rank are 
performed left to right, and unary operators right to left.  If in doubt — 
use parentheses! 

 

6.7 Short-Circuit Evaluation 
 
In the binary logical operations && and ||, the left operand is always evaluated 
first.  There may be situations when its value predetermines the result of the 
operation.  For example, if  condition1 is false, then condition1 && 
condition2 is false, no matter what the value of condition2.   Likewise, if 
condition1 is true, then condition1 || condition2 is true. 
 
If the value of the first (left) operand in a binary logical operation 
unambiguously determines the result of the operation, the second 
operand is not evaluated.  This rule is called short-circuit evaluation. 

 
If the expression combines several && operations at the same level, such as 
 
    condition1 && condition2 && condition3 ... 
 
the evaluation of conditions proceeds from left to right.  If a false condition is 
encountered, then the remaining conditions are not evaluated, because the value of 
the entire expression is false.  Similarly, if the expression combines several || 
operations at the same level,  
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    condition1 || condition2 || condition3 ... 
 
the evaluation proceeds from left to right only until a true condition is encountered, 
because then the value of the entire expression is true. 
 
The short-circuit evaluation rule not only saves the program execution time but is 
also convenient in some situations.  For example, it is safe to write: 
 
    if (y != 0 && x/y > 3) 
        ... 

 
because x/y is not calculated when y is equal to 0.  Similarly, 
 
    if (i >= 0 && i < SIZE && a[i] == 0) 
        ... 

 
makes sure that an element a[i] of the array is tested only when the index i is 
within the legal range between 0 and SIZE–1. 
 

6.8 Case Study: Day of the Week Program 
 
To illustrate the use of conditional statements and Boolean expressions, let us 
consider a program that deals with dates.  The program will calculate the day of the 
week for a given date. 
 
The dialog with the program, which we call Weekday, looks as follows: 
 

Please enter a date (e.g. 11 23 2001) ==> 6 1 2000                   � 
6–1–2000, Thursday 

 
It is easy to foresee which functions will be needed to carry out this task.  We will 
need a function to check whether the entered date is valid. Then we will have to 
deal with leap years, which will require a function that determines whether a given 
year is a leap year.  Of course, we also need a function that finds the day of the 
week for a given date.  The easiest way to figure this out is to calculate the total 
number of days elapsed from some known fixed date, such as 01-01-1900, which 
was a Monday.  We will need a function for that, too. 
 
We will first implement these functions, then write the main program.  This is 
called a bottom-up approach.  The date functions we have identified are fairly 
general: they will help us to solve the problem at hand, but we can also use them 
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later for other, similar tasks.  By not focusing exclusively on a particular task but 
taking a slightly more general view of relevant functions, we can enhance the 
reusability of code, usually without extra cost for the project we are working on. 
 
Let us begin with the LeapYear(…) function.  This function takes an int 
argument (the year) and returns a Boolean value: 
 

 WEEKDAY.CPP     � 
bool LeapYear (int year) 
 
// "year" must be between 1900 and 2999. 
// Returns true if "year" is a leap year. 
 
{ 
        //  true, if year is divisible by 4, and ... 
        //    ... either not divisible by 100, or divisible by 400.  
 
    return (year % 4 == 0 && 
                 (year % 100 != 0 || year % 400 == 0)); 
} 

 
This function returns the value of one logical expression, which has the type bool.  
Extra parentheses around 
 
   (year % 100 != 0 || year % 400 == 0)  

 
are important, because && has precedence over ||. 

a a a 

The other two functions require some tables: the number of days in each month 
and the number of days from the beginning of the year to the beginning of a 
month.  We can implement them as global constant arrays: 
 

 WEEKDAY.CPP    � 
const int daysInMonth[12] =  
   { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; 
 
// Days from the beginning of the year 
//   to the beginning of the month: 
 
const int daysToMonth[12] = 
   { 0,  31,  59,  90, 120, 151, 181, 212, 243, 273, 304, 334 }; 

 Continued    ® 
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const char *dayName[7] = { 
    "Sunday", 
    "Monday", 
    "Tuesday", 
    "Wednesday", 
    "Thursday", 
    "Friday", 
    "Saturday" 
}; 
 
const int DAY0 = 1; // Day of week for 01–01–1900 is Monday = 1. 

 
The above declarations use standard built-in arrays because it is convenient to 
initialize the constant values within the declarations.  We could use the apvector 
class instead and write a special function that would set the values of the 
“constants” (but then we could not formally declare them as constants).  It would 
look as follows: 
 
apvector<int> daysInMonth(12); 
... 
void InitDateConstants() 
 
{ 
    daysInMonth[0] = 31; 
    ... 
} 

 
The keyword const cannot be used in the apvector version. 
 
If we use built-in arrays, however, the keyword const in the declarations prevents 
the program from altering these arrays, so  there is no danger of overwriting wrong 
memory locations by using a bad subscript.  The worst thing that can happen if a 
subscript is out of range is an incorrect result.  We do have to be careful to use 
correct subscripts: 0 through 11 for daysInMonth and daysToMonth, and 0 
through 6 for dayName. 
 
The asterisk in the declaration 
  
const char *dayName[7] = { 

 
indicates that dayName is an array of character strings (more precisely, pointers to 
character strings). 
 
We have also supplied a universal constant DAY0 set to 1, which indicates that 
January 1, 1900 was a Monday. 



 CHAPTER 6 ~ LOGICAL EXPRESSIONS AND if–else STATEMENTS 111 

a a a 

The ValidDate(…) function simply verifies that the month, day, and year have 
valid values.  This function returns a bool value — true if the date is valid, and 
false otherwise: 
 

 WEEKDAY.CPP     � 
bool ValidDate (int month, int day, int year) 
 
// Returns true if month–day–year is a valid date between 
//   01–01–1900 and 12–31–2999. 
 
{ 
    bool valid = false;  // First assume the date is invalid. 
    int days; 
 
    // If year and month have valid values: 
    if (year >= 1900 && year <= 2999 && 
                                month >= 1 && month <= 12) { 
 
        // Get the number of days in this month from the table: 
        days = daysInMonth[month–1]; // (–1, because the indices 
                                     //   of an array start from 0.) 
 
        // If February of a leap year –– increment the number 
        //   of days in this month: 
        if (month == 2 && LeapYear(year)) 
            days++; 
 
        // Check that the given day is within the range. 
        //   If so, set valid to true: 
        if (day >= 1 && day <= days) 
            valid = true; 
    } 
 
    return valid; 
} 

 
The third function calculates the total number of days elapsed since 01-01-1900.  
Let us call it DaysSince1900(…).  This number may be quite large, more than 
400,000 for the year 2999, and it may overflow an int variable if the int data 
type is implemented as a 16-bit value.  To be on the safe side, let’s make this 
function return a long value: 
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 WEEKDAY.CPP     � 
long DaysSince1900 (int month, int day, int year) 
 
// Returns the number of days elapsed since 01–01–1900 
//  to month–day–year 
 
{ 
    long days; 
 
    // Calculate days to 01–01 of this year with correction for 
    //   all the previous leap years: 
    if (year == 1900) 
        days = 0; 
    else 
        days = long(year – 1900) * 365 
           + (year – 1901) / 4       // +1 for each 4th year 
           – (year – 1901) / 100     // –1 for each 100th year 
           + (year – 1601) / 400;    // +1 for each 400th year, 
                                     //    starting at 2000 
 
    // Add days for previous months with correction for 
    //   the current leap year: 
    days += daysToMonth[month–1]; 
    if (LeapYear(year) && month > 2) days++; 
 
    // Add days since the beginning of the month: 
    days += day – 1; 
 
    return days; 
} 

 
Note the cast to long in the calculation of the number of days: 
 
    days = long(year – 1900) * 365 
        ... 

 
Without it, an int value for the entire expression would be calculated first, 
because all the operands would have the int type and the result could be truncated 
before being assigned to the long variable days.  Note also the use of integer 
division to compensate for the leap years since 1900:  
 
        ... 
         + (year – 1901) / 4           // +1 for each 4th year 
         – (year – 1901) / 100         // –1 for each 100th year 
         + (year – 1601) / 400;        // +1 for each 400th year 

 
The expression +(year–1901)/4  adds a day to the calculation for every fourth 
year (starting in 1905) that has gone by.  Likewise, –(year–1901)/100  



 CHAPTER 6 ~ LOGICAL EXPRESSIONS AND if–else STATEMENTS 113 

subtracts a day for every 100th year that has passed.  Finally, starting at 2001, 
+(year–1601)/400 adds a day back for 2000 and every 400th year. 

a a a 

The DayOfWeek(…) function returns an integer between 0 (Sunday) and 6 
(Saturday).  This function takes a known date (01-01-1900), takes its day of the 
week (Monday = 1), adds the number of days elapsed since that date, divides the 
result by 7 and takes the remainder: 
 

 WEEKDAY.CPP     � 
int DayOfWeek (int month, int day, int year) 
 
// Returns the day of the week for a given date: 
//   0 –– Sunday, 1 –– Monday, etc. 
 
{ 
    return int((DAY0 + DaysSince1900(month, day, year)) % 7); 
} 

 
Note, that the expression has to be cast back into the int type, because 
DaysSince1900(…) returns a long value. 

a a a 

Finally, we can create the main program that implements the user interface and 
calls the functions described above: 

 WEEKDAY.CPP     � 
// WEEKDAY.CPP 
// 
//   This program calculates the day on which the 
//   user's birthday (or any other date) falls. 
// 
//   Author: Cal Lenders   
//   Rev 1.0 
// 
 
#include <iostream.h> 
 
//**************************************************************** 
//*************      Tables and functions      ******************* 
//**************************************************************** 
 
... 
 

 Continued    ® 
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//**************************************************************** 
//*************                main            ******************* 
//**************************************************************** 
 
int main() 
 
{ 
    int month, day, year; 
    int weekday; 
 
    cout << "Please enter a date (e.g. 11 23 2001) ==> "; 
    cin >> month >> day >> year; 
 
    if (!ValidDate(month, day, year)) { 
        cout << "*** Invalid date ***\n"; 
        return 1; 
    } 
 
    weekday = DayOfWeek(month, day, year); 
 
    // Display the entered date and the name of the calculated 
    //  day of week: 
    cout << month << '–' << day << '–' << year << ", " 
         << dayName[weekday] << endl; 
 
    return 0; 
} 

 
Note the expression: 
 
    if (!ValidDate(month, day, year)) { 
        ... 

 
which reads: "if not ValidDate..." 
 

6.9 Lab: Holidays 
 
Write a program that calculates and displays the dates of Labor Day (first Monday 
in September), Memorial Day (last Monday in May), Thanksgiving (fourth 
Thursday in November), and Election Day (first Tuesday after the first Monday in 
November) for a given year.  Re-use the functions and definitions from the 
Weekday program, but replace the main program with new code.  The program 
should prompt the user for a desired year and calculate and display the holiday 
names and their respective dates. 
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6.10 if–else if and Nested if–else 
 
Sometimes, a program needs to branch three or more ways.  Consider the sign(x) 
function: 
 

  sign x
if x
if x
if x

( )
, ;
, ;
, .

=
− <

=
>

⎧

⎨
⎪

⎩
⎪

1 0
0 0
1 0

 

 
sign(x) can be implemented in C++ as follows: 
 
int Sign (double x)    // Correct but clumsy code... 
{ 
    int s; 
 
    if (x < 0.) 
        s = –1; 
    else { 
        if (x == 0.) 
            s = 0; 
        else 
            s = 1; 
    } 
    return s; 
} 

 
This code is correct, but it is a bit cumbersome.  The  x < 0 case seems arbitrarily 
singled out and placed at a higher level than the x == 0 and  x > 0 cases.  
Actually, the braces in the outer else can be removed, because the inner  if–
else is one complete statement.  Without braces, the compiler always associates 
an else with the nearest if above it.  The simplified code without braces looks as 
follows: 
 
int Sign (int x)   // Correct, but still clumsy... 
{ 
    int s; 
 
    if (x < 0.) 
        s = –1; 
    else 
        if (x == 0.) 
            s = 0; 
        else 
            s = 1; 
    return s; 
} 
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It is customary in such situations to arrange the statements differently: the second 
if  is placed next to the first  else and one level of indentation is removed, as 
follows: 
 
int Sign (int x)   // The way it should be... 
  
{ 
    int s; 
 
    if (x < 0.) 
        s = –1; 
    else if (x == 0.)  // This arrangement of if–else is a matter 
        s = 0;         //   of style.  The second if–else is 
    else               //   actually nested within the first else. 
        s = 1; 
    return s; 
} 

 
This format emphasizes the three-way branching that conceptually occurs at the 
same level in the program, even though technically the second if–else is nested 
in the first  else. 
 
A chain of  if–else if  statements may be as long as necessary: 
 
    if (condition1) { 
        ...                  // 1st case 
    } 
    else if (condition2) { 
        ...                  // 2d case 
    } 
    else if (condition3) { 
        ...                  // 3d case 
    } 
    ... 
    ... 
    else { 
        ...                  // Last case 
    } 

 
This is a rather common structure in C++ programs and it is usually quite readable.  
For example: 
 



 CHAPTER 6 ~ LOGICAL EXPRESSIONS AND if–else STATEMENTS 117 

    ... 
    if (points >= 92) 
        grade = 'A'; 
    else if (points >= 84) 
        grade = 'B'; 
    else if (points >= 70) 
        grade = 'C'; 
    else if (points >= 55) 
        grade = 'D'; 
    else 
        grade = 'F'; 
    ... 

 
A different situation occurs when a program requires true hierarchical branching 
with nested if–else statements, as in a decision tree: 
                      • 
                    /   \ 
                 if(…)  else 
                  /       \  
                 •         •    
                  / \        / \ 
              if(…)else  if(…)else 
                /     \    /     \ 
 
Consider, for example, the following code: 
 
... 
    // Surcharge calculation: 
    if (age <= 25) { 
        if (accidents) 
            surcharge = 1.4;  // Premium surcharge 40% 
        else  
            surcharge = 1.2;  // Surcharge 20% 
    } 
    else {    // if age > 25 
        if (accidents) 
            surcharge = 1.1;  // Surcharge 10% 
        else  
            surcharge = .9;   // Discount 10% 
    } 
    ... 

 
Here the use of nested if–else is justified by the logic of the task.  It is possible 
to rewrite the second part of it as if–else if, but then the logic becomes 
confusing: 
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... 
    // Surcharge calculation (more confusing): 
    if (age <= 25) { 
        if (accidents) 
            surcharge = 1.4;  // Premium surcharge = 40% 
        else  
            surcharge = 1.2;  // 20% 
    } 
    else if (accidents) 
        surcharge = 1.1;  // Premium surcharge = 10% 
    else  
        surcharge = .9;   //  Discount 10% 
    ... 

 
When  if–else statements are nested in your code to three or four levels, the 
code becomes intractable.  This indicates that you probably need to restructure 
your code, perhaps using separate functions to handle individual cases. 
 
Nested ifs can often be substituted with the && operation: 
 
    if (condition1) 
        if (condition2) 
            statement; 

 
is exactly the same (due to the short-circuit evaluation) as: 
 
    if (condition1 && condition2) 
        statement; 

 

6.11 Common  if–else Errors 
 

1.  Extra semicolon: 
 
if (condition);   // Compiled as:  if (condition) /* do nothing */; 
    statement;    //               statement; 
 

2.  Missing semicolon before else: 
 
if (condition) 
    statement1    // Syntax error caught by the compiler 
else 
    statement2; 
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3.  Omitted braces: 
 
if (condition)     // Compiled as: if (condition) 
    statement1;    //                  statement1; 
    statement2;    //              statement2; 
 

4.  “Dangling” else: 
 
if (condition1)      // Compiled as: if (condition1) { 
    if (condition2)  //                  if (condition2) 
        statement1;  //                      statement1; 
else                 //                  else 
    statement2;      //                      statement2; 
                     //              } 

 

6.12 Summary 
 
The general form of a conditional statement in C++ is: 
 
    if (condition) 
        statement1; 
    else 
        statement2; 

 
where statement1 and statement2 can be either simple statements (terminating with 
a semicolon) or compound statements (a block of statements within braces).  
condition may be any arithmetic or logical expression. 
 
There are no special values for “true” and “false“ in C++: any non-zero integer 
value is interpreted as true, and a zero value is interpreted as false.  Newer C++ 
compilers have built-in bool data type and true and false constants.  If a 
particular compiler does not have the bool data type, programmers may add the 
definitions 
 
typedef int bool; 
const bool false = 0; 
const bool true = 1; 

 
to their program or put them in a header file. 
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Usually, conditions are written with the relational operators  
 
 < less than 
 <= less than or equal 
 > greater than 
 >= greater than or equal 
 == is equal 
 != is not equal 
 
and the logical operators 
 
 && and 
 || or 
 ! not 
 
It is useful for programmers to know two properties from formal logic called 
De Morgan's laws: 
 
    !(a && b) = !a || !b 
    !(a || b) = !a && !b 
 
If a particular compiler does not have the built-in bool data type, programmers 
may add the definitions 
 
typedef int bool; 
const bool false = 0; 
const bool true = 1; 

 
to their program, or put them in a header file. 
 
Use the 
 
    if... 
    else if... 
    else if... 
    ... 
    else ... 

 
structure for multiway branching and use nested if–else for hierarchical 
branching. 
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7.1 Discussion 
 
Loops or iterative statements tell the program to repeat a fragment of code several 
times or as long as a certain condition holds.  Without iterations, a programmer 
would have to write separately every instruction executed by the computer, and 
computers are capable of executing millions of instructions per second.  Instead, 
programmers can implement solutions to problems using fewer instructions, some 
of which the computer repeats many times.  A formal description of the procedural 
steps needed to solve a problem is called an algorithm.  Designing, implementing, 
and understanding algorithms is a crucial programming skill, and iterations are a 
key element in non-trivial algorithms. 
 
Iterations are often used in conjunction with arrays.  We need to use iterations if 
we want to perform some process on all the elements of an array.  For example, we 
might want to find the largest element of an array, or the sum of all the elements. 
 
C++ provides three convenient iterative statements: while, for, and  do–while.  
Strictly speaking, any iterative code can be implemented using only the while 
statement, but the other two add flexibility and make the code more concise and 
idiomatic. 
 

7.2 while and for Loops 
 
The general form of the while statement is: 
 
    while (condition) { 
        statement1; 
        statement2; 
        ... 
    } 

 
condition can be any arithmetic or logical expression; it is evaluated exactly the 
same way as in an if statement. 
 
Informally the while statement is often called the while loop.  The statements 
within braces are called the body of the loop.  If the body consists of only one 
statement, the braces surrounding the body can be dropped: 
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    while (condition) 
        statement1; 

 
It is important not to put a semicolon after  while(condition).  With a 
semicolon, the body of the loop would be interpreted as an empty statement, which 
would leave statement1 completely out of the loop. 

a a a 

The following function returns the sum of all integers from 1 to n: 
 
int AddUpTo (int n)  
 
// Returns the sum of all integers from 1 to n, if n >= 1, 
//  and 0 otherwise. 
 
{ 
    int sum = 0; 
    int i = 1; 
 
    while (i <= n) { 
        sum += i; 
        i++;        // increment i 
    } 
    return sum; 
} 

 
We can discern three elements that must be present, in one form or 
another, with any while loop: initialization, a test of the condition, and 
incrementing. 

 
    1.  Initialization 
 
The variables tested in the condition must first be initialized to some values.  In the 
above example, i is initially set to 1 in the declaration int i = 1. 
 
     2.  Testing 
 
The condition is tested before each pass through the loop.  If it is false, the body is 
not executed, iterations end, and the program continues with the next statement 
after the loop.  If the condition is false at the very beginning, the body of the 
while loop is not executed at all.  In the  AddUpTo(…) example, the condition is 
i <= n.  If  n is zero or negative, the condition will be false on the very first test 
(since i is initially set to 1).  Then the body of the loop will be skipped and the 
function will return 0. 
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    3.  Incrementing 
 
At least one of the variables tested in the condition must change within the body of 
the loop.  Otherwise, the loop will be repeated over and over and never stop, and 
your program will hang.  The change of a variable is often implemented with 
increment or decrement operators, but it can come from any assignment or input 
statement.  At some point, however, the tested variables must get such values that 
the condition becomes false.  Then the program jumps to the next statement after 
the body of the loop. 
 
In the  AddUpTo(…) function, the change is achieved by incrementing the 
variable i: 
 
        ... 
        i++;        // increment i 
        ... 

 
These three elements — initialization, testing, and incrementing (change) — must 
be present, explicitly or implicitly, with every while loop. 
 
In the following more concise and efficient but less obvious implementation of the 
AddUpTo(…) function, the numbers are added in reverse order, from n to 1: 
 
int AddUpTo (int n)  
 
// Returns the sum of all integers from 1 to n, if n >= 1, 
//  and 0 otherwise. 
 
{ 
    int sum = 0; 
 
    while (n > 0) 
        sum += n––; 
 
    return sum; 
} 

 
In this code, initialization is implicit in the value of the argument n passed to the 
function, and the change (actually decrementing) is buried inside a compound 
assignment statement. 

a a a 
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The for loop is a shorthand for the while loop that combines initialization, 
condition, and increment in one statement.  Its general form is: 
 
    for (initialization;   condition;   increment) { 
        statement1; 
        statement2; 
        ... 
    } 

 
where initialization is a statement that is always executed once before the first pass 
through the loop, condition is tested before each pass through the loop, and 
increment is a statement executed at the end of each pass through the loop. 
 
A typical example of a for loop is: 
 
    for (i = 0;   i < n;   i++) { 
        ... 
    } 

 
The braces can be dropped if the body of the loop has only one statement. 
 
The  AddUpTo(n) function can be rewritten with a for loop as follows: 
 
int AddUpTo (int n)  
 
// Returns the sum of all integers from 1 to n, if n >= 1, 
//  and 0 otherwise. 
 
{ 
    int sum = 0; 
    int i; 
 
    for (i = 1;   i <= n;   i++) 
        sum += i; 
 
    return sum; 
} 

 
Initialization and increment statements may be composed of several statements 
separated by commas.  For example: 
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int AddUpTo (int n)  
 
// Returns the sum of all integers from 1 to n, if n >= 1, 
//  and 0 otherwise. 
 
{ 
    int i, sum; 
 
    for (sum = 0, i = 1;   i <= n;   i++) 
        sum += i; 
 
    return sum; 
} 

 
Or, as written by a person determined not to waste any keystrokes: 
 
int Add (int n) 
{ 
    for (int s = 0; n > 0; s += n––); 
    return s; 
} 

 
(In this inconsiderate code, the body of the for loop  is empty — all the work is 
done in the “increment” statement.) 

a a a 

The following function calculates n! (n factorial), which is defined as the product 
of all numbers from 1 to n: 
 
long Factorial (int n) 
 
// Returns 1 * 2 * ... * n, if n >= 1 (and 1 otherwise). 
 
{ 
    long f = 1; 
    int k; 
 
    for (k = 2;   k <= n;   k++) 
        f *= k; 
 
    return f; 
} 

 



 CHAPTER 7 ~ ITERATIVE STATEMENTS:  while, for, do–while 127 

7.3 Lab: Fibonacci Numbers 
 
Write and test a program that calculates the n-th Fibonacci number. 
 
The sequence of Fibonacci Numbers is defined as follows: the first number is 1, 
the second number is 1, and each consecutive number is the sum of the two 
preceding numbers.  In other words, 
 
 F1 = 1; 
 F2 = 1; 
 Fn = Fn–1 + Fn–2    (for n > 2). 
 
The first few numbers in the sequence are 1, 1, 2, 3, 5, 8, 13, ... The numbers are 
named after Leonardo Pisano (Fibonacci), who invented the sequence in 1202.  
The numbers have many interesting mathematical properties and even some 
computer applications. 
 
Your main program should prompt the user for a positive integer n, call the  
Fibonacci(n) function, and display the result.  Note that Fibonacci numbers 
grow rather quickly, so it is a good idea to keep them in variables of the long or 
even long double data type and to request small n when you test your program. 
 
The Fibonacci(n) function can be based on one iterative loop.  You can have it 
keep two previously calculated numbers f1 and f2, find the next number 
f3 = f1 + f2,  and then, before the next pass through the loop, shift the values 
between variables as follows: 
 
    ... 
    f1 = f2; 
    f2 = f3; 
    ... 

 

7.4 The do–while Loop 
 
The do–while loop differs from the while loop in that the condition is tested 
after the body of the loop.  This assures that the program goes through the iteration 
at least once.   The general form of the do–while statement is: 
 
    do { 
        ... 
    } while (condition); 
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The program repeats the body of the loop as long as condition remains true.  It is 
better always to keep the braces, even if the body of the loop is just one statement, 
because the code without them is hard to read. 
 
do–while loops are used less frequently than while and for loops.  They are 
convenient when the variables tested in the condition are calculated or entered 
within the body of the loop rather than initialized and incremented.  For example: 
 
    ... 
    char answer; 
 
    do { 
        ProcessTransaction(); 
        cout << "Another transaction (y/n)? "; 
        cin >> answer; 
    } while (answer == 'y'); 
    ... 

 
If for some reason you do not like do–while loops, you can easily avoid them by 
using a while loop and initializing the variables in such a way that the condition 
is true before the first pass through the loop.  The above code, for example, can be 
rewritten as follows: 
 
    ... 
    char answer = 'y';   // Initially answer is set equal to 'y'. 
 
    while (answer == 'y') { 
        ProcessTransaction(); 
        cout << "Another transaction (y/n)? "; 
        cin >> answer; 
    } 
    ... 

 
7.5 break and continue 

 
The reserved words break and continue can be used only inside a body of a 
loop.  (The break statement can be also used inside a switch; see Section 8.6.)  
break instructs the program to immediately break out of the loop and continue 
with the next statement after the body of the loop.  continue tells the program to 
skip the rest of the statements on the current iteration and go to the next pass 
through the loop.   Both of these statements must always appear inside a 
conditional (if or else) statement — otherwise some code in the body of the loop 
would be skipped every time, and the compiler would generate a warning: 
“Unreachable code in ...” 
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In the following example, the program calculates the sum of the reciprocal squares 
of the first N positive integers: 
 

 1
1

1
2

1
3

1
2 2 2 2+ + + +...

N
 

 
This series converges to π2/6 and can be used to approximate π.  The loop ends 
when we have added 100 terms, or when the last added term is less than a given 
threshold epsilon, whichever happens first: 
 
#include <iostream.h> 
#include <math.h> 
 
int main() 
 
{ 
    const double epsilon = .000001; 
    double x, xSum = 0.; 
    int k; 
 
    for (k = 1;   k <= 100;    k++) { 
        x = 1. / double(k);   // Calculate x = 1/k; 
        x *= x;               // Square x; 
        xSum += x;            // Add it to the sum. 
 
        // *** Break out of the loop if x is less than epsilon *** 
        if (x < epsilon) 
            break; 
    } 
    cout << "Pi is approximately equal to " << sqrt(6. * xSum) << endl; 
    return 0; 
} 

 
The following function checks whether an integer n is a prime.  We have to check 
all potential factors m  but only as long as m n2 ≤  (because if m is a factor, then so 
is n/m and one of the two must be less or equal to the square root of n).  The 
function uses break to reduce the number of iterations: 
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bool IsPrime (int n) 
 
// Returns true if n is a prime, false otherwise. 
 
{ 
    int factors = 0; 
 
    if (n <= 1) 
        return false; 
 
    for (int m = 2;   !factors;   m++) { 
        if (m * m > n) 
            break; 
        if (n % m == 0) 
            factors++; 
    } 
    return (factors == 0); 
} 

 
Another way to break out of the loop is to put a return statement inside the loop.  
For example: 
 
    ... 
    for (int m = 2;   ;   m++) { 
        if (m * m > n) 
            break; 
        if (n % m == 0) 
            return false;      // Not a prime. 
    } 
    return true; 
    ... 

 
In the above code, the condition in the for loop is empty.   An empty condition is 
considered always true.  The break or return is used to break out of the loop. 
 
There is a C++ idiom 
 
    for(;;) 
        ... 

 
which means simply “repeat.”  The only way to get out of this loop is to use 
break or return. 

a a a 

The following code uses continue in calculating the sum and product of all 
primes less then or equal to N: 
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    ... 
    const int N = 100; 
 
    ... 
    int sum = 0; 
    long product = 1; 
    int p; 
 
    for (p = 2;   p <= N;   p++) { 
        if (!IsPrime(p)) 
            continue; 
        sum += p; 
        product *= p; 
    } 
    ... 

 
Note that although the increment statement is actually executed at the 
end of each iteration through a for loop, continue does not skip it. 

 
Thus, in the above example, p++  is properly executed on every iteration. 
 
This is not so with while loops, where the “increment” statement is a part of the 
body of the loop. 
 
Be careful with continue in while loops: it may inadvertently skip the 
increment statement, causing the program to hang. 

 
This would happen in the following version of the above example: 
 
    ... 
    int p = 2; 
 
    while (p <= N) {        // This code hangs for N >= 4, because p 
        if (!IsPrime(p))    //   never gets incremented after  
            continue;       //   the first non–prime p = 4 is 
                            //   encountered. 
        sum += p; 
        product *= p; 
        p++; 
    } 
    ... 
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7.6 A Word About goto 
 
C++ also has the goto statement, which implements an unconditional jump to a 
specified statement in the program, but its use is considered highly undesirable 
because it violates the principles of structured programming.  The format is: 
 
    goto label; 

 
where label is some name chosen by the programmer.  The label, followed by a 
colon, is placed before the statement to which you want to jump.  For example: 
 
{ 
    ... 
    if (cmd == 'y') 
        goto quit; 
    ... 
 quit: 
    return; 
} 

 
goto does not have to be inside a loop. 
 
The use of the goto statement is strongly discouraged. 

 

7.7 Iterations and Arrays 
 
Iterations are indispensable for dealing with arrays for two reasons.  First, if an 
array is large and we want to access every element (for example, to find the sum of 
all the elements), it is not practical to repeat the same statement over and over 
again in the source code: 
 
    sum = 0; 
    sum += a[0]; 
    sum += a[1]; 
    ... 
    ... 
    sum += a[999]; 

 
As we have seen, we can use a simple for loop instead and save 998 lines of code: 
 
    sum = 0; 
    for (i = 0;   i < 1000;   i++) 
        sum += a[i]; 
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Second, a programmer may not know in advance the exact size of an array.  The 
program may declare an array with a maximum possible size, but the actual 
number of elements can become known only when the program is running.  Or the 
program may use an apvector and resize it as necessary.  The only way to deal 
with such a “variable-length” array is through iterations, usually a for loop.  This 
is illustrated in the following example: 
 
// GRADES.CPP 
// 
// This program finds the average grade for a number 
//   of students' grades, entered from the keyboard. 
 
#include <iostream.h> 
#include <iomanip.h> 
#include "apvector.h" 
 
double Average(const apvector<int> &a); 
 
int main() 
 
{ 
    int nStudents, i; 
    apvector<int> grades;    // An empty array (the size is 0). 
    double avgGrade; 
 
    // Enter the number of students: 
    cout << "Enter the number of students: "; 
    cin >> nStudents;        // The actual number of students' grades 
                             //   is entered here 
    if (nStudents <= 0) 
         return 1; 
    grades.resize(nStudents); 
                             // Set the size of the array to nStudents. 
 
    // Enter students' grades and save them in the grades array: 
    cout << "Enter students' grades:\n"; 
    for (i = 0;   i < nStudents;   i++) 
        cin >> grades[i]; 
 
    // Compute and display the average grade: 
    cout.setf(ios::showpoint | ios::fixed); 
    cout << "Average grade is " 
         << setprecision(1) << Average(grades) << endl; 
 
    return 0; 
} 

 Continued    ® 
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double Average (const apvector<int> &a) 
 
// Returns the average of the elements of the array a. 
 
{ 
    int i, n = a.length(), sum = 0; 
 
    for (i = 0;   i < n;   i++) 
        sum += a[i]; 
 
    return double(sum) / n; 
} 

 
Recall that an apvector argument is normally passed to a function “by 
reference,” that is, its name is preceded by an ampersand character.  If the function 
does not change the array, then the const keyword is used.  For example: 
 
double Average(const apvector<int> &a); 

 
Passing arguments “by reference” is explained later, in Chapter 11. 
 
(A note for the impatient.  Normally, when an argument is passed to a function, its 
value is copied on the system stack.  If the function changes that value, only the 
copy changes, not the original.  There is also another method of passing an 
argument — “by reference.”  Then the address of the variable, not its value, is 
copied on the stack.  When we pass an apvector to a function, we want to pass it 
by reference to avoid copying the whole array.  Also, if a function changes some 
elements of the array, then we must pass it by reference so that the change occurs 
in the original array, not in a copy.) 
 

7.8 Lab: Students' Grades 
 
The program below reads students' grades from a data file, GRADES.DAT, into an 
array.  It then computes and displays the average, highest, and lowest grades.  
Study the ReadNumbers(…) function, which reads the numbers from a file into an 
array.  Supply the missing functions MaxElement(…), MinElement(…), and 
AddElements(…), whose prototypes have been provided. 
 
(To find the largest element of an array you can declare a variable such as aMax, 
initialize it to the value of the first element, then scan through the remaining 
elements of the array and update aMax each time you encounter an element that is 
larger.) 
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 GRADES.CPP         � 
// GRADES.CPP 
// 
// This program reads students' grades from a file, GRADES.DAT, 
//   and finds the average, the highest and the lowest grade. 
// 
// Author: Mark Avgerinos 
// Date 05–21–1999 
// 
 
#include <iostream.h> 
#include <fstream.h>  // Supports file I/O 
#include <iomanip.h> 
#include "apvector.h" 
 
//**************************************************************** 
//******************    Function Prototypes    ******************* 
//**************************************************************** 
 
bool ReadNumbers (char fileName[], apvector<int> &a); 
int AddElements (const apvector<int> &a); 
int MaxElement (const apvector<int> &a); 
int MinElement (const apvector<int> &a); 
 
//**************************************************************** 
//******************            Main           ******************* 
//**************************************************************** 
 
int main() 
 
{ 
    const int MAXSTUDENTS = 100; 
    int nStudents; 
    apvector<int> grades(MAXSTUDENTS); 
    double avgGrade; 
 
    if (!ReadNumbers("GRADES.DAT", grades)) { 
        cout << "Cannot open GRADES.DAT.\n"; 
        return 1; 
    } 
 
    nStudents = grades.length(); 
    if (nStudents == 0) { 
        cout << "GRADES.DAT file contains no numbers.\n"; 
        return 1; 
    } 
 
    cout << nStudents << " students\n"; 

 Continued    ® 
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    avgGrade = double(AddElements(grades)) / nStudents; 
    cout.setf(ios::showpoint | ios::fixed); 
    cout << "The average grade is " 
         << setprecision(1) << avgGrade << endl; 
    cout << "The highest grade is " 
         << MaxElement(grades) << endl; 
    cout << "The lowest grade is " 
         << MinElement(grades) << endl; 
 
    return 0; 
} 
 
//**************************************************************** 
//******************          Functions        ******************* 
//**************************************************************** 
 
bool ReadNumbers (char fileName[], apvector<int> &a) 
 
// Reads integers from a file "fileName" into the array a. 
// Returns true if the file is opened sucessfully, false otherwise. 
 
{ 
    int n = 0, len = a.length(); 
 
    // Declare a variable "inpFile" of the data type "ifstream" 
    //   –– input file stream –– and open the file with the 
    //   requested name "fileName" for reading: 
 
    ifstream inpFile(fileName); 
 
    // Checks that the file exists: 
 
    if (!inpFile)   
        return false; 
 
    // Extract numbers from the file input stream 
    //   (i.e., read numbers from the file into the array) 
    //   until the end of file is reached or the array is full: 
 
    while (n < len && inpFile >> a[n]) 
        n++; 
 
    // Resize the array to the actual number of grades read: 
    a.resize(n); 
 
    return true; 
} 
 
//**************************************************************** 

 Continued    ® 
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int AddElements (const apvector<int> &a) 
 
// Returns a[0] + a[1] + ... + a[len–1] 
 
{ 
    ... 
    ... 
} 
 
//**************************************************************** 
 
int MaxElement (const apvector<int> &a) 
 
// Returns the value of the largest element of the array a. 
 
{ 
    ... 
    ... 
} 
 
//**************************************************************** 
 
int MinElement (const apvector<int> &a) 
 
// Returns the value of the smallest element of the array a. 
 
{ 
    ... 
    ... 
} 

 
Create your own test file, GRADES.DAT.  It should contain up to 100 integers, 
which may be placed on separate lines or several per line; the program does not 
care.  Compile and test the program, including special test cases when the file does 
not exist and when it is empty. 
 

7.9 Iterations and Two-Dimensional Arrays 
 
If we want to process all the elements of a matrix (two-dimensional array), it is 
convenient to use nested for loops.  For example: 
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    apmatrix<int> grid(25, 80); 
    int nRows, nCols, row, col; 
    ... 
    nRows = grid.numrows(); 
    nCols = grid.numcols(); 
    for (row = 0;   row < nRows;   row++) { 
        for (col = 0;   col < nCols;   col++) { 
             cout << grid[row][col] << "  "; 
        } 
        cout << endl; 
    } 

 
Now that we are equipped with convenient for loops, the task of transposing a 
matrix (that is, flipping the elements of a square two-dimensional array 
symmetrically about the main diagonal as in the “extra credit” Lab assignment in 
Section 5.7) can be implemented with just a few lines of code: 
 
void Transpose(apmatrix<double> &m) 
{ 
    int size = m.numrows(); // or m.numcols(); 
    double temp; 
   
    for (i = 1;   i < size;   i++) { 
        for (j = 0;   j < i;   j++) { 
            // Swap m[i][j] and m[j][i] 
            temp = m[i][j]; 
            m[i][j] = m[j][i]; 
            m[j][i] = temp; 
        } 
    } 
} 

  

7.10 Lab: John Conway's Game of Life 
 
The Game of Life is a simulation game introduced by British mathematician John 
Conway.  It became popular in 1970, when Martin Gardner brought it to the 
attention of readers of Scientific American.  The simulation takes place on a 
rectangular grid.  Each cell of the grid may be “dead” (vacant) or “alive” (occupied 
by an “organism”).  The initial configuration of alive cells goes through a series of 
generations.  In each successive generation, some alive cells die and some new 
cells are born in vacant places depending on the total number of alive neighbors of 
the cell. The “births” and “deaths” follow the following rules: 
 

1. A neighbor of a given cell has a common side or corner with that cell.  Each 
cell inside the grid has 8 neighbors. 
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2. An alive cell with two or three alive neighbors remains alive in the next 
generation; an alive cell with less than two alive neighbors dies (of 
loneliness); a cell with four or more alive neighbors also dies (of 
overcrowding). 

 
3. A vacant cell becomes alive in the next generation if it has exactly three 

alive neighbors. 
 
4. All births and deaths take place at exactly the same time, so that the change 

from one generation to the next is instantaneous. 
 
The following program implements a simplified one-dimensional version of The 
Game of Life.  In this version, the organisms live in a one-dimensional array and a 
cell remains alive or is born if it has exactly one alive neighbor and dies if neither 
or both its neighbors are alive. 
 

 LIFE1D.CPP           � 
// LIFE1D.CPP 
 
// This program implements The Game of One–Dimensional Life. 
// 
// Author: Priscilla Wornum 
 
#include <iostream.h> 
#include <iomanip.h> 
#include "apvector.h" 
 
const int SIZE = 13;  // The size of the grid.  In the 1–D version 
                      //   the "grid" is a one–dimensional array. 
 
const char ALIVE = 'x'; 
const char DEAD = '.'; 
 
apvector<char> grid(SIZE); 
 
void NextGeneration() 
 
// Creates the next generation on the grid. 
 
{ 
    apvector<char> newgrid(SIZE); 
    int i, neighbors; 

 Continued    ® 
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    // Count alive neighbors of each cell and 
    //   calculate the new grid: 
 
    for (i = 0;   i < SIZE;   i++) { 
        neighbors = 0; 
        if (i > 0 && grid[i–1] == ALIVE) 
            neighbors++; 
        if (i < SIZE–1 && grid[i+1] == ALIVE) 
            neighbors++; 
        if (neighbors == 1) 
            newgrid[i] = ALIVE; 
        else 
            newgrid[i] = DEAD; 
    } 
 
    // Update the grid: 
 
    grid = newgrid; 
} 
 
//**************************************************************** 
 
void DisplayGrid(int generation) 
 
// Displays the current generation on the grid. 
 
{ 
    int i; 
    cout << setw(4) << generation << ": "; 
 
    for (i = 0;   i < SIZE;   i++) 
        cout << grid[i]; 
    cout << endl; 
} 
 
//**************************************************************** 
 
void LoadGrid() 
 
// Reads the initial grid configuration. 
 
{ 
    int i; 
 
    cout << "Enter initial configuration ('x' or '.'): "; 
    for (i = 0;   i < SIZE;   i++) 
        cin >> grid[i]; 
    cin.ignore(80, '\n'); // Skip all remaining input to 
                          //   the end of the line. 
} 
 

 Continued    ® 
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//**************************************************************** 
 
int main() 
 
{ 
    int generation = 0; 
 
    LoadGrid(); 
    DisplayGrid(generation);       // Display initial configuration. 
 
    char next; 
    for(;;) { 
        cout << "Next (y/n)? "; 
        cin >> next; 
        if (next != 'y') 
            break; 
        NextGeneration(); 
        generation++; 
        DisplayGrid(generation); 
    } 
    return 0; 
} 

 
Adapt this program for the “real” (two-dimensional) Game of Life.  Make grid an 
apmatrix of 20 rows by 50 columns.  For the sake of simplicity, declare grid as 
a global variable rather than passing it to functions as an argument.  (As a rule we 
avoid using global variables, but here the whole program deals with this grid; there 
is no need to be too dogmatic about the rules.)  Declare the dimensions of the array 
as symbolic constants. 
 
Modify the LoadGrid(…) function to read the initial grid configuration from a file 
with a given name.  The input file is simply a picture: 
 

..................................................                   � 

...x.............................................. 

....x............................................. 

..xxx............................................. 

.................................................. 
           (...etc.) 

 
There are a number of interesting life-sustaining configurations.*  A few famous 
ones, nicknamed “Glider,” “Cheshire Cat,” and “Harvester,” are provided on the 
accompanying diskette (LIFE_GLI.DAT, LIFE_CAT.DAT, LIFE_HRV.DAT). 
 
                                                      
 
* For more information on The Game of Life see Martin Gardner's Wheels, Life, and Other Mathematical 
Amusements, 1983. 
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7.11 Summary 
 
C++ offers three iterative statements: 
 
    while (condition) { 
        ... 
    } 

 
    for (initialization;   condition;   increment) { 
        ... 
    } 

 
    do { 
        ... 
    } while (condition); 

 
In a while loop, the variables tested in the condition must be initialized before the 
loop, and at least one of them has to change inside the body of the loop.  The 
program tests condition before each pass through the loop.  If condition is false at 
the very first test, the while loop is skipped, and the program jumps to the first 
statement after the body of the loop.  Otherwise the program continues iterations 
for as long as condition holds true. 
 
The for loop combines initialization, condition, and increment (change) in one 
statement.  The initialization statement is executed once, before the loop.  
condition is tested before each pass through the loop, and if it is false, the loop is 
skipped and the program jumps to the next statement after the body of the loop.  
The increment statement is executed at the end of each pass through the loop. 
 
The do–while loop is different from the while loop in that condition is tested 
after the body of the loop.  Thus, the body of a do–while loop is always executed 
at least once. 
 
A break statement inside the body of a loop tells the program to jump 
immediately out of the loop to the first statement after the body of the loop.  A 
continue statement in the loop tells the program to skip the remaining statements 
in the body of the loop on  the current iteration and jump to the top of the loop for 
the next iteration.  break and continue may appear only inside some if or else 
statement, because otherwise some statements inside the body of the loop would be 
unreachable.  One should be careful with continue in while loops, because it 
may inadvertently skip the statements that increment or change variables tested in 
the condition, causing the program to “hang.” 
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8.1 Discussion 
 
There are situations when a program must take one of several actions depending on 
the value of some variable or expression.  Such situations often arise when the 
program is processing commands, events, menu choices, or transactions of 
different types.  If the program has to handle just two or three possible actions, you 
can easily use if–else if  statements: 
 
    int x = expression;       // Evaluate the expression 
                              //   and save its value in x 
 
    if (x == valueA) {        // Take action A 
        statementA1; 
        statementA2; 
        ... 
    } 
    else if (x == valueB) {   // Take action B 
        statementB1; 
        statementB2; 
        ... 
    } 
    else {                    // Take some default action 
        ... 
    } 

 
(valueA and valueB are constants or constant expressions.) 
 
When the number of possible actions is large, the use of if–else if...  
becomes cumbersome and inefficient.  C++ provides a special mechanism, the 
switch statement, for handling such situations.  Its general form is: 
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    switch (expression) { 
 
      case valueA:        // Take action A 
        statementA1; 
        statementA2; 
        ... 
        break; 
 
      case valueB:        // Take action B 
        statementB1; 
        ... 
        break; 
 
      ... 
      ... 
 
      case valueZ:        // Take action Z 
        statementZ1; 
        ... 
        break; 
 
      default:            // Take some default action 
        ... 
        break; 
    }   

 
valueA, valueB, ... , valueZ are integer or character constants.  When a switch is 
compiled, the compiler creates a table of these values and the associated addresses 
of the corresponding “cases” (code fragments).  When the switch is executed, the 
program first evaluates expression to an integer.  Then it finds it in the table and 
jumps to the corresponding “case.”  If the value is not in the table, the program 
jumps to “default.”  The break statement at the end of a “case” tells the program 
to jump out of the switch and continue with the first statement after the switch.  
switch, case, default, and break are C++ reserved words. 
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8.2 Case Study: The Calculator Program 
 
The following program emulates a toy calculator with four operations: +, –, *, /.  A 
session with the program may look as follows: 
 

Enter operand1 operation (+ – * /) operand2                          � 
For example: 
Next: 1+2 
  (or '0q' to quit) 
 
Next: 1 + 2 
= 3 
Next: 4 / 0 
*** Division by zero *** 
Next: 4 : 2 
= 2 
Next: 0q 
 

The program uses a switch statement to handle the four operations:  
 

 CALC.CPP              � 
// CALC.CPP 
// 
// This program emulates a calculator with +, –, *, and / operations. 
// 
// Author: T.I. Childs 
 
#include <iostream.h> 
 
int main() 
 
{ 
    char op;          // operation sign 
    double x, y;      // operands 
 
    cout << "Enter operand1 operation (+ – * /) operand2\n" 
         << "For example:\n" 
         << "Next: 1+2\n" 
         << "  (or '0q' to quit)\n\n"; 
 
    for (;;) {        // Repeat the "for" loop until break  
        cout << "Next: "; 
        cin >> x; 
        cin >> op; 
        if (op == 'q') 
            break;                 // break from for(;;) 
        cin >> y; 

 Continued    ® 



 CHAPTER 8 ~ THE switch STATEMENT 147 

 
        switch (op) { 
 
          case '+': 
            cout << "= " << x + y << endl; 
            break; 
 
          case '–': 
            cout << "= " << x – y << endl; 
            break; 
 
          case '*': 
            cout << "= " << x * y << endl; 
            break; 
 
          case '/': 
          case ':': 
            if (y == 0.) { 
                cout << "*** Division by zero ***\n"; 
                break;               // Break out from the switch. 
            } 
 
            cout << "= " << x / y << endl; 
            break; 
 
          default: 
            cout << "*** Invalid operation ***\n"; 
            break; 
        } 
    } 
    return 0; 
} 

 
  

8.3 Case Study: Menu 
 
The switch statement is a convenient way to process commands entered by a 
user.  A program can  display a menu and ask the user to enter a number or a letter 
that signifies the desired choice.  The input is processed by the switch, which 
may call the appropriate functions to perform selected actions.  The switch is 
normally placed inside a loop that processes user commands until told to quit.  In 
the following example, menu choices are designated by letters: 
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          One Of Each, Inc.                                          � 
      Inventory Control System 
 
         (S)how inventory item 
         (A)dd item 
         (R)emove item 
         (L)ist inventory 
         (Q)uit 
 
Next command ==> S 

 
The above menu comes from the inventory control program presented below.  The 
program is in its embryonic stage.  Since we don’t yet know how to deal with 
character strings and we have not yet studied data structures, we cannot 
conveniently represent the names, available quantities, or other characteristics of 
the inventory items.  At this stage we will represent each inventory item by a “part 
number”  (an integer) and will not keep track of available quantities.  So all the 
program does, at this point, is add, remove, and display elements of an integer 
array. 
 

 MENU.CPP             � 
// MENU.CPP 
// 
// This program illustrates the use of simple one–character 
//   commands.  The program displays a menu, accepts a command 
//   and executes it.  The application is an embryonic 
//   "Inventory Control System" which, at this stage of development, 
//   only maintains a list of "inventory items" (integers). 
//   Items are stored in an integer array. The "quantity" is 
//   not supported –– it is set to 1 for all inventory items. 
// 
// Author: Bill Wares 
// 
 
#include <iostream.h> 
#include <iomanip.h> 
#include <ctype.h>                 // Declares toupper(ch) 
#include "apvector.h" 
 
const int QUANTITY = 1;        // Quantity for each item is set 
                               //   to 1 in this preliminary version. 
 

 Continued    ® 
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// Function prototypes: 
 
int Find (const apvector<int> &inventory, int partNum); 
void Show (const apvector<int> &inventory, int partNum); 
void Add (apvector<int> &inventory, int partNum); 
void Remove (apvector<int> &inventory, int partNum); 
void List (const apvector<int> &inventory); 
 
//**************************************************************** 
//****************             main            ******************* 
//**************************************************************** 
 
int main() 
 
{ 
    apvector<int> inventory;   // Array of items (initially empty) 
    char cmd; 
    int partNum; 
 
    cout << "\n          One Of Each, Inc.\n"; 
    cout << "      Inventory Control System\n"; 
 
    for(;;) {  // Repeat (until break) 
 
        // Show the menu and prompt: 
 
        cout << "\n";  // Output a blank line 
 
        cout << "\t (S)how inventory item\n";      // '\t' is tab 
        cout << "\t (A)dd item\n"; 
        cout << "\t (R)emove item\n"; 
        cout << "\t (L)ist inventory\n"; 
        cout << "\t (Q)uit\n"; 
        cout << endl; 
        cout << "Next command ==> "; 
 
        // Accept command: 
 
        cin >> cmd;             // Read one char. 
        cin.ignore(80, '\n');   // Skip remaining input (up to 80 
                                //   chars) to the end of the line. 
        cmd = toupper(cmd);     // Convert letter to upper case 
                                //   to allow lower case input 
                                //   for commands (for convenience). 
 
        // Quit if 'Q' 
 
        if (cmd == 'Q') 
            break;                  // Quit processing commands 
 
        cout << "\n\n****************************************\n"; 

 Continued    ® 
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        // Process command: 
 
        switch (cmd) { 
 
          case 'S':           // Show inventory item information 
 
            cout << "Part number: "; 
            cin >> partNum; 
            Show(inventory, partNum); 
            break; 
 
          case ... 
          ... 
          ... 
  
        } 
 
        cout << "****************************************\n"; 
    } 
    return 0; 
} 
... 

 
Note the use of the cin.ignore(80, '\n') and toupper(cmd) calls: 
 
        ... 
        cin >> cmd;             // Read one char. 
        cin.ignore(80, '\n');   // Skip remaining input (up to 80 
                                //   chars)to the end of the line. 
        cmd = toupper(cmd);     // Convert letters to upper case 
                                //   to allow lower case input 
                                //   for commands (for convenience). 
        ... 

 
cin.ignore(80, '\n') tells the input stream to skip all input characters (up to 
80) until the user hits the  <ENTER> key.  This allows the users to enter full words 
for commands (even though only the first letter is used).  toupper(ch) returns 
the corresponding uppercase character for an alphabetic character ch.  It does not 
modify any other characters.  This standard library function is declared in the 
header file  ctype.h, along with tolower(ch) and other useful functions that 
convert and identify different subsets of characters. 
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8.4 Lab: One of Each Inventory System 
 
Complete the switch statement in the Menu program introduced in the previous 
section.  Study the Add(…) and Remove(…) functions below and supply code for 
the Show(…) and List(…) functions.  Then compile and test the program. 
 

 MENU.CPP             � 
 
//**************************************************************** 
//****************          Functions          ******************* 
//**************************************************************** 
 
int Find (const apvector<int> &inventory, int partNum) 
 
// Finds the part number, partNum, in the inventory array. 
// Returns its index if found, –1 otherwise. 
 
{ 
    int i, nItems = inventory.length(); 
 
    for (i = 0;   i < nItems;   i++) 
        if (inventory[i] == partNum) 
            return i; 
    return –1; 
} 
 
//**************************************************************** 
 
void Show (const apvector<int> &inventory, int partNum) 
 
// Displays inventory information for the given part number. 
 
{ 
    ... 
    ... 
} 
 
//**************************************************************** 
 

 Continued    ® 
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void Add (apvector<int> &inventory, int partNum) 
 
// Adds the new inventory item with the specified part number, 
//   partNum, to the inventory list. 
//   Checks whether partNum is already in the list. 
 
{ 
    int nItems; 
 
    if (Find(inventory, partNum) >= 0) 
        cout << "already registered in the inventory list.\n"; 
    else { 
        nItems = inventory.length(); 
        inventory.resize(nItems+1); 
        inventory[nItems] = partNum; 
        cout << "added to the inventory list.\n"; 
    } 
} 
 
//**************************************************************** 
 
void Remove (apvector<int> &inventory, int partNum) 
 
// Removes the item partNum from the inventory list, if it 
//   is there.  Displays an appropriate message if partNum is not 
//   in the list. 
 
{ 
    int i, j, nItems; 
 
    i = Find(inventory, partNum); 
    if (i < 0) 
        cout << "not found.\n"; 
    else { 
        nItems = inventory.length(); 
        for (j = i+1;   j < nItems;   j++)  // Shift items 
            inventory[j–1] = inventory[j];  //  to fill the gap. 
        inventory.resize(nItems – 1); 
        cout << "removed from the inventory list.\n"; 
    } 
} 
 
//**************************************************************** 
 
void List (const apvector<int> &inventory) 
 
// Displays the inventory list. 
 
{ 
    ... 
    ... 
} 
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Note that arrays are not very convenient if you must remove elements from the 
middle, because a gap appears.  You can fill it by shifting the next element and all 
the subsequent elements to the left by one. 
 
 For “extra credit:” 
 
Keep the elements of your inventory array sorted (ordered) in ascending order by 
the part number.  Instead of adding a new element at the end of the array,   you 
have to find the right place where to insert the new element.  You have to create an 
empty slot for the new element by shifting all subsequent elements to the right 
(starting from the last element in the array and working your way back to the 
marked spot — Figure 8-1).  The new element is then inserted into the created 
vacant slot. 
 
(The search operation is more efficient with sorted arrays.  When the array is in 
random order, you have to scan through the whole array to find an element with 
the given value or to ascertain that no such element is in the array.  This is how the 
Find(…) function works.  This method is called sequential search.  If you use 
sequential search on a sorted array, you can terminate the search as soon as you 
find an element that is equal to or larger than the target value.  More importantly, 
on a sorted array you can use the binary search method which, for large arrays, is 
much more efficient than sequential search.  The binary search method is 
explained in Section 9.3.) 
 
 

                                                    3rd step    2nd step   1st step

   A    B    C    E    F    G
  a[0] a[1] a[2] a[3] a[4] a[5] a[6]

                    4th step
                  D

 
Figure 8-1.   Inserting a new value into the middle of an array 
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8.5 Details of the switch Statement 
 
Note the following properties of the switch statement: 

1. The expression evaluated in a switch must have an integral type (integer or 
char).  It is often simply one variable, like op in the calculator example. 

2. All “cases” must be labeled by constants.  A “case” cannot be labeled by a 
variable or an expression that contains variables. 

3. The same action may be activated by more than one constant label.  For 
example: 

 
          case '/':        // both '/' and ':' signify division 
          case ':': 
            ... 

4. There may be a break in the middle of a “case,” but then it must be inside an 
if or else, otherwise some code in that “case” would be unreachable.  Such a 
break tells the program to jump out of the switch immediately.  For example: 

 
          case '/': 
            ... 
            if (y == 0.) { 
                cout << "*** Division by zero ***\n"; 
                break;    // Jump out of the switch 
            } 
            ... 
            break;        // Jump out of the switch 

5. The default clause is optional.  If not specified, the default action is “do 
nothing.” 

6. It is a common mistake to omit break at the end of a “case.” 
 
The switch syntax does not require that each “case” end with a break.  
Without a break, though, the program falls through and continues with 
the next “case.”  This C++ feature may lead to annoying bugs, and 
programmers usually take special care to put a break at the end of each 
“case.” 

 
Unusual situations, where a programmer intentionally allows the program to “fall 
through” from one “case” to the next, call for a special comment in the code. 
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8.6 Breaks in Nested Loops and Switches 
 
Loops and switch statements use the same break keyword.  A break must 
always appear inside a loop or switch. 
 
In situations where there is a switch within a loop or a loop within a 
switch, or a loop within a loop, or a switch within a switch...  break 
affects only the innermost loop or switch that contains it. 

 
In the calculator program, for example, we used a break within a switch which 
is within a for loop.  That break breaks out of the switch, but not out of the 
for loop.  Likewise, in the following code: 
 
    for (x = 0.;    x <= 1.;   x +=.01) 
        for (y = 0.;    y <= 1.;   y +=.01) 
            if (x*x + y*y >= r*r) break; 
 
    cout << "x = " << x << " y = " << y; 

 
break would tell the program to jump out of the inner loop, but not out of the 
outer loop.  So if the programmer intended to quit all iterations over y and x when 
the if(condition) became true, he has a “bug.”  The correct code would be: 
 
    bool quit = false; 
    for (x = 0.;   x <= 1. && !quit;   x +=.01) 
        for (y = 0.;    y <= 1.;   y +=.01) 
            if (x*x + y*y >= .64) { 
                quit = true; 
                break; 
            } 
    cout << "x = " << x << " y = " << y; 

 
If a break is within a loop which is within a “case,” the break works only for the 
loop, and another break is needed for the “case.”  For example: 
 
    switch(cmd) { 
      ... 
 
      case 1000:  // Find a prime between 1000 and 2000 
        for (p = 1000; p <= 2000;   p++) 
            if (IsPrime(p)) 
                break;           // Break out of the "for" loop. 
        break;                   // Break out of the switch. 
 
      ... 
    } 
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8.7 Summary 
 
The general form of a switch statement is 
  
    switch (expression) { 
 
      case valueA:        // Take action A 
        statementA1; 
        statementA2; 
        ... 
        break; 
 
      case valueB:        // Take action B 
        statementB1; 
        ... 
        break; 
 
      ... 
      ... 
      default:            // Take the default action 
        ... 
        break; 
    } 

 
where valueA, valueB, etc., are some integer or character constants.  The switch 
evaluates expression and jumps to the “case” labeled by the corresponding 
constant value, or to the default “case” if no match has been found.  A switch can 
be used to replace a long  if–else if sequence and is convenient for processing 
menu commands, events, or transactions that require different actions. 
 
The break statement is used to break out of a loop or a switch.  A break must be 
inside a loop or switch. In the case of nested loops or switches, a break tells the 
program to break out of the innermost loop or switch that contains it but does not 
affect the control flow in the outer switches or loops. 
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9.1 Discussion 
 
There is a subtle but crucial gap between solving a problem and simply expressing 
the solution in a particular language or notation.  Knowing all the rules of English 
grammar and spelling won't help you give directions from point A to point B 
unless you know how to get there.  Until now, we have mostly focused on the style 
and syntax of C++.  As a result, we have acquired substantial expressive power; 
now we can use many features of the C++ language to solve problems. 
 
A method of performing a task or solving a problem can be described at different 
levels of abstraction.  In computer applications, an analyst can describe a method 
in more or less abstract terms to a computer programmer.  It helps if the analyst 
knows the capabilities of computers and the general principles of computer 
programming, but he does not have to know any specific programming language.  
The programmer can then describe the method in C++ or Pascal or LISP, allowing 
any computer that has a compiler for that language to translate the program from a 
still abstract high-level programming language to a precise list of instructions for a 
specific CPU. 
 
Unless the problem it’s solving is completely trivial, a program is based on one or 
several algorithms.  A formal definition of an algorithm is elusive, which is a sure 
sign that the notion is fundamentally important.  Basically, an  algorithm is a more 
or less abstract and formal step-by-step recipe that tells how to perform a certain 
task or solve a certain problem on a computer.  The paradox of this definition, 
however, is that algorithms existed long before computers.  One of the most 
famous, Euclid's Algorithm for finding the greatest common factor of two integers, 
dates back to about 300 B.C.  You may also recall the algorithm for long division 
of numbers, often used in the pre-calculator era.  The question of whether 
computers have evolved the way they are to support the implementation of  
algorithms or whether algorithms (as they are understood now) gained prominence 
due to the advent of computers belongs to the chicken-and-egg category. 
 
An algorithm may describe a method for accomplishing a task without relying on 
any particular programming language or any particular computer model.  In fact, 
an algorithm can be used without any computer by a person equipped with a pencil 
and paper. 
 
Various tools and notations have been developed for describing and teaching 
algorithms.  Flowcharts, for example, use graphical representation.  The flowchart 
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in Figure 9-1 represents an algorithm for finding the sum of all the elements of an 
array.  Rectangles represent processing steps; rhombuses, conditional branching 
points.  Another representation is called pseudocode.  It uses operations similar to 
those defined in programming languages, but without paying much attention to 
syntax or data types; this produces a shorthand that all programmers, regardless of 
the language they use, can read and understand.  For example: 
 

Input: a[0], ... a[N–1] 
1. i ← 0   // arrow means "set to" – same as = in C++ 
2. sum ← 0 
3. Repeat steps 4–5 while i < N 
4. sum ← sum + a[i] 
5. i ← i+1 
Output: sum 

 
 
 

   Input:
           a[0]... a[N-1]

            i ← 0
            sum ← 0

             i < N?

       no             yes

                sum ← sum+a[i]
                i ← i+1
Output:
       sum

 
 

 
Figure 9-1.   Flowchart for finding the sum of elements of an array 

 
 
In the rest of this chapter we will consider three classical examples of algorithms: 
selection sort, an algorithm for arranging the elements of an array in ascending (or 
descending) order; binary search, an algorithm for quickly finding the element 
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with a given value in a sorted array; and Euclid's Algorithm for finding the 
greatest common factor of two integers.  We will first explain each algorithm 
informally and then implement it as a C++ function. 
 

9.2 Selection Sort 
 
Given an array of numbers, the task is to rearrange the elements of the array in 
ascending order. 
 
We are looking for a general algorithm that works for an array of any size and for 
any values of its elements.  There are many algorithms for accomplishing this task 
(called sorting algorithms), but the most straightforward one is probably selection 
sort.  It involves the following steps: 
 

Selection sort: 
1. Initialize a variable n to the size of the array. 
2. Find the largest among the first n elements. 
3. Make it swap places with the n–th element. 
4. Decrement n by 1. 
5. Repeat steps 2–4 while n ≥ 2. 

 
At the first iteration we find the largest element of the array and swap it with the 
last element.  The largest element is now in the correct place, from which it will 
never move again.  We decrement n, pretending that the last element of the array 
does not exist anymore, and repeat the procedure until we have worked our way 
through the array.  The iterations stop when there is only one element left, because 
it has already been compared with every other element and is guaranteed to be the 
smallest. 
 
The Sort(…) function below implements this algorithm for an array of the type 
double: 
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 ALGORTHM.CPP   � 
void Sort(apvector<double> &a) 
 
// Sort a[0], ..., a[size–1] in ascending order. 
 
{ 
    int i, iMax, n; 
    double aTemp; 
    int size = a.length(); 
 
    for (n = size;   n >= 2;   n––) { 
 
        // Find the index "iMax" of the largest element 
        //   among a[0], ..., a[n–1]: 
 
        iMax = 0; 
        for (i = 1;   i < n;   i++) 
            if (a[i] > a[iMax]) 
                iMax = i; 
 
        // Swap a[iMax] with a[n–1]: 
 
        aTemp = a[iMax];    // Save a[iMax] in a temporary location. 
        a[iMax] = a[n–1];   // Copy a[n–1] to a[iMax]. 
        a[n–1] = aTemp;     // Copy saved value to a[n–1]. 
 
        // Decrement n (accomplished by n–– in the "for" loop). 
    } 
} 
 

A similar procedure will sort the array in descending order; instead of finding the 
largest element, we can simply find the smallest element of the array. 
 
Sorting is a common operation in computer applications and a favorite subject for 
studying and comparing algorithms.  Several other sorting algorithms are presented 
later, in Part 2. 
 

9.3 Binary Search 
 
Suppose we have an array of a certain size and we want to find the location of a 
given target value in that array (or to ascertain that it is not there).  This task is 
called searching.  If the elements of the array are in random order, we have no 
choice but to check the value of each element until we find the target element (or 
finish scanning through the whole array).  This may be time-consuming if the array 
is large.  For an array of 1,000,000 elements we will examine an average of 
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500,000 elements before finding the target (assuming that the target value is 
always somewhere in the array). 
 
It turns out that if our array is sorted, there is a much faster searching algorithm, 
the binary search.  Let's say our array is sorted in ascending order and we are 
looking for the target value x.  Take the middle element of the array and compare it 
with x.  If they are equal, the target element is found.  If x is smaller, the target 
element must be in the left half of the array, and if x is larger, the target must be in 
the right half of the array.   In any event, each time we repeat the same procedure, 
we narrow the range of our search by half.  This sequence stops when we find the 
target or get down to just one element, which happens very quickly. 
 
Using the binary search method, an array of 3 elements requires at most 2 
comparisons.   An array of seven elements requires at most 3 comparisons.  An 
array of 15 elements requires at most 4 comparisons,  and so on.  In general, an 
array of 2n – 1 (or less) elements requires at most n comparisons.  So an array of 
1,000,000 elements will require at most 20 comparisons (220 – 1 = 1,048,575)  
which is much better than 500,000.  (That is why this method is called “divide and 
conquer.” )  
 
The binary search algorithm for an integer array, sorted in ascending order, is 
implemented in the following function Search(…): 
 

 ALGORTHM.CPP   � 
int Search(const apvector<int> &a, int target) 
 
// Performs binary search on the array 
//   a[0] < a[1] < ... < a[size–1]. 
//   Looks for an element a[k] equal to "target". 
// Returns k if the target is found; –1 otherwise. 
 
{ 
    int left = 0, right = a.length() – 1, middle; 
    int k = –1; 
 
    while (left <= right) { 
 
        // Take the index of the middle element between 
        //   "left" and "right": 
 
        middle = (left + right) / 2; 
 
        // Compare  this element to the "target" value 
        //  and adjust the search range accordingly: 

 Continued    ® 
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        if (target > a[middle]) 
            left = middle + 1; 
        else if (target < a[middle]) 
            right = middle – 1; 
        else {     // target must be equal to a[middle] 
            k = middle; 
            break; 
        } 
    } 
 
    return k; 
} 

 
One way to understand and check code is to trace it manually on some 
representative examples.  Let us take, for example: 
 
    Given: 
        size = 6; 
        a[size] = {8,13,21,34,55,89} 
          (a[0] =  8; a[1] = 13; a[2] = 21; a[3] = 34; 
           a[4] = 55; a[5] = 89); 
        target = 34. 
 
    Initially: 
        left =  0; right = size–1 = 5. 
 
    First iteration: 
        middle = (0+5)/2 = 2; 
        a[middle] = a[2] = 21; 
        target > a[middle] (34 > 21) 
          ==> Set left = middle + 1 = 3; (right remains 5). 
 
    Second iteration: 
        middle = (3+5)/2 = 4; 
        a[middle] = a[4] = 55; 
        target < a[middle] (34 < 55) 
          ==> Set right = middle – 1 = 3; (left remains 3).  
 
    Third iteration: 
        middle = (3+3)/2 = 3; 
        a[middle] = a[3] = 34; 
        target == a[middle] (34 = 34) 
          ==> Set k = middle = 3; break. 
 
    Return: 3. 
 
A more comprehensive check should also include tracing special situations (e.g., 
when the target element is the first or the last element, or is not in the array) and 
“degenerate” cases when size is equal to 1 or 0. 
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We also have to make sure that the function terminates — otherwise, the program 
may hang.  This is better accomplished by logical or mathematical reasoning than 
by tracing specific examples, because it is hard to foresee all the possible paths of 
an algorithm.  We know that our Search(…) function terminates because on each 
iteration the difference right–left decreases by at least 1.  So eventually we 
either break out of the loop via break (when the target is found), or reach a point 
where right–left becomes negative,  right becomes smaller than left, and 
the condition in the while loop becomes false. 
 

9.4 Euclid's Algorithm for Finding GCF 
 
Given two positive integers, m and n, their greatest common factor GCF(m,n) is 
defined as the largest integer d such that both m and n are evenly divisible by d.  
For example, 
 
 GCF(1001, 4235) = 77 
  
One way to find the greatest common factor of two integers is to obtain the prime 
factorization for each number and then take the product of all shared primes.  For 
example, 
 
 1001 = 7 ⋅ 11 ⋅ 13; 
 
 4235 = 5 ⋅ 7 ⋅ 11 ⋅ 11; 
 
 GCF(1001, 4235) = 7 ⋅ 11 = 77 
 
This method works well for small numbers, but its implementation on a computer 
would be rather cumbersome and inefficient.  Euclid's Elements contains the 
description of an elegant “computer” algorithm for finding the GCF.  (Perhaps 
Euclid should be credited with defining, in principle, the architecture and 
capabilities of the modern computer.) 
 
Euclid's Algorithm is based on the following simple observations: 
 

1.  If m is evenly divisible by n then GCF(m, n) = n; 
2.  If m is divided by n and r is the remainder (r ≠ 0), then 

 
   GCF(m, n) = GCF(n, r) 
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This is true because 
 
 m = qn+r 
 
If a divisor d divides evenly into both m and n , it also divides evenly into r.  
Conversely, if d divides into both n and r, it also divides into m.  Thus, the set of 
all common factors of m and n is the same as the set of all common factors of n and 
r, and GCF(m, n) = GCF(n, r). 
 
In Euclid's algorithm we repeatedly substitute smaller numbers n and r for the 
previous pair m and n, as long as r is not equal to zero.  When r = 0, we return the 
answer n.   
Figure 9-2 shows a flowchart for this algorithm. 
 
 
 

   Input:
           m,n

       r ← m % n

                      m ← n
                      n ← r

          r = 0?    no

           yes

    Output:
            n

 
 

Figure 9-2.   Flowchart for Euclid's Algorithm 
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It is implemented in the following C++ code: 
 

 ALGORTHM.CPP   � 
int GCF(int m, int n) 
 
// Returns the greatest common factor of two positive integers 
//   m and n. 
 
{ 
    int r; 
 
    for(;;) {  // Repeat (until break) 
        r = m % n;         // r = "m modulo n" i.e. the remainder 
                           //    when m is divided by n. 
        if (r == 0)        // i.e. if n evenly divides m 
             break; 
        m = n;             // Substitute values: m becomes n and  
        n = r;             //   n becomes r.  GCF(m,n) = GCF(n,r). 
    } 
    return n; 
} 
 

  Let us trace the above code for m = 1001,  n = 4235: 
 
    Given: 
        m = 1001; n = 4235; 
 
    First iteration: 
        r = 1001 % 4235 = 1001; 
        m = 4235; 
        n = 1001; 
 
In this example m happens to be less than n, so the first iteration does nothing but 
swap them.  This can be avoided if we stipulate that m must be greater or equal to 
n.  It often happens, however, that a good algorithm works under more general 
conditions than anticipated.  So the above function works for m < n as well. 
 
    Second iteration: 
        r = 4235 % 1001 = 231; 
        m = 1001; 
        n = 231; 
 
    Third iteration: 
        r = 1001 % 231 = 77; 
        m = 231; 
        n = 77; 
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    Fourth iteration: 
        r = 231 % 77 = 0; 
        break; 
 
    Return n = 77; 
 
The GCF(…) function always terminates, because on each iteration we first 
calculate r < n, then set the new value of n equal to r.  So the value of n 
decreases on each iteration, and at some point the break condition, r == 0, must 
become true. 
 

9.5 Lab: Practice in Algorithms 
 
In these exercises we are looking for economical solutions that do not use 
temporary arrays. 
 
1.  Write the following function and a main program to test it: 
 
void CumulativeSum(const apvector<double> &a, apvector<double> &s) 
 
// Calculates and places in the array "s" cumulative sums: 
//   s[0] = a[0] 
//   s[1] = a[0] + a[1] 
//   ... 
//   s[size–1] = a[0] + a[1] + ... + a[size–1] 

 
Don’t forget to resize the vector s to the appropriate size first. 
 
2.  The array pages contains page numbers for a reading assignment.  The page 
numbers are in ascending order, but they may be written in an abbreviated form: 
the leading digits in a page number may be dropped if they are the same as in the 
previous number.  For example, 413, 15, 21, 1001, 3 actually means 413, 415, 421, 
1001, 1003.  Write and test a function 
 
void ExpandNumbers (apvector<int> &pages) 

 
that converts abbreviated numbers into the correctly expanded numbers and places 
them into the same array. 
 
3.  Write and test a function that generates Pascal's triangle: 
 
void PascalTriangle(apvector<int> &tr, int n) 
// Generates the n–th row of Pascal's triangle in tr 
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The triangle, named after the French mathematician Blaise Pascal (1623-1662), 
looks like this: 
 
    row 0:            1 
    row 1:           1 1 
    row 2:          1 2 1 
    row 3:         1 3 3 1 
    row 4:        1 4 6 4 1 
     ...         ........... 
 
All the numbers on the sides of the triangle are 1, and each number inside the 
triangle is the sum of the two numbers above it.  The elements in the n-th row are 
the coefficients in the expansion of (x+y)n.  For example: 
 
 ( )x y x x y x y xy y+ = + + + +4 4 3 2 2 3 44 6 4  
 
(As it happens, the coefficient in the k-th position in the n-th row is also equal to 
the number of possible different ways to choose k objects out of n.  For example, 
there are 6 different ways to choose 2 objects out of 4.) 
 
An output statement strategically placed within PascalTriangle(…) will print 
out the whole triangle up to the n-th row.  Simplified output may look as follows: 
 

1                                                                    � 
1  1 
1  2  1 
1  3  3  1 
1  4  6  4  1 

 
With a little extra work, you can insert the necessary number of spaces at the 
beginning of each line so that the output triangle is symmetrical: 
 

         1                                                           � 
       1   1 
     1   2   1 
   1   3   3   1 
 1   4   6   4   1 
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9.6 Summary 
 
It is not easy to formalize the concept of an algorithm.  To do this properly, we 
would need a very abstract mathematical model of a “computing machine.”  A set 
of instructions enabling such a machine to accomplish a certain task would 
represent an algorithm for that task. 
 
Informally, an algorithm is a step-by-step “recipe” for carrying out a task.  An 
algorithm must be general enough to work for a reasonably general formulation of 
the task.  Algorithms use abstract versions of the operations and control structures 
(such as assignment, iterations, conditional branching, etc.) that can be expressed 
more specifically in various programming languages.  Thus an algorithm is an 
abstract blueprint for a computer program and must be readily convertible into a 
working program. 
 
The correctness of an algorithm can be ascertained informally by trying it out on a 
representative set of examples or proven more formally through logical or 
mathematical reasoning.  Logical errors in algorithms will creep into programs as 
“bugs.”  Besides careful logical examination of the algorithm and its 
implementation as a program, one way of getting rid of bugs is to trace the code 
with some examples, either manually or with the help of a debugger. 
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10.1 Discussion 
 
Monte Carlo methods are computer models that involve some chance or 
probabilistic behavior.  (Monte Carlo is a famous gambling resort in Monaco.)  In 
this chapter, we will consider applications of a Monte Carlo method for estimating 
areas, volumes, or integrals that are hard to calculate by analytical methods. 
 
Suppose we have a figure in the x-y plane and we want to estimate its area.  
Suppose the figure lies within some known rectangle and for each point with 
coordinates (x, y) we can tell whether the point belongs to the figure or not.  The 
area of interest may be the area under the graph of some function y = f(x) and 
bounded by the x-axis and two vertical lines: x = a and x = b (Figure 10-1).  Such 
an area is called the definite integral of the function f(x) on the interval [a,b].  
Assuming that f(a) ≥ f(x) ≥ 0 for any x between a and b, this area lies within the 
rectangle 
 
                     { ; ( )}a x b y f a≤ ≤ ≤ ≤0  
 
A point (x, y) from the rectangle lies inside or on the border of the figure when 
(x, y) is on or under the curve, that is, when y ≤  f(x). 
 

    y

                    y = f(x)

        .        .
                 a                   b         x

 
Figure 10-1.   The area under the curve is called definite integral of a function 
 
 
The idea of the Monte Carlo method is to throw many random points uniformly 
distributed over the rectangle that contains our area of interest.  Some points will 
land inside the figure, and other points will land outside.  The fraction of all points 
that land inside should be approximately equal to the ratio of the area of the figure 
to the area of the rectangle. 
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The C++ standard library includes a function rand() that returns a “random” 
number.  rand() is an unusual function.  Normally, a function called with the 
same arguments or with no arguments returns the same value.  But the whole point 
of rand() is that it returns a different, “random” value on every call.  This is 
accomplished by saving some internal state of the random number generator and 
updating it after each call.  The numbers returned by rand() could not possibly be 
true random numbers, because they are calculated according to some procedure 
and because their sequence repeats after a number of calls to rand().  
Nevertheless, these numbers have a rather uniform distribution over their range, 
and the length of the period before repetition is quite long (e.g. 232).  Numbers 
produced by a random number generator procedure are called pseudorandom 
numbers. 
 
By default, successive calls to rand() always generate the same sequence.  
Another library function, srand(unsigned seed), “seeds” the random number 
generator, so that the starting point of the random sequence changes.  If necessary, 
the seed can be derived from the system clock or some other random event. 
 
rand() is declared in the header file stdlib.h.  It returns an integer between 0 
and RAND_MAX.    RAND_MAX is a constant also defined in  stdlib.h (usually  
215–1). 
 
A number returned by rand() can be scaled to any desired range [a,b].  For 
example: 
 
    const double a = –10., b = 10.; 
    double x; 
    ... 
    x = a + double(rand()) * ((b–a) / RAND_MAX); 

 
The number of points used in the Monte Carlo method depends on the desired 
accuracy and the properties of the random number generator.  Even with a very 
large number of points, the accuracy of the estimate is still limited by the 
granularity of the grid of possible random coordinates.  If random integers between 
0 and RAND_MAX are scaled to the interval [a,b], all scaled values fall on a discrete 
grid with the step equal to (b–a)/RAND_MAX  (Figure 10-2). 
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    y

      .........
      .........
      .........
      .........
      .........
      .........
                       x  

 
Figure 10-2.   Accuracy of the Monte Carlo method is limited by the 

granularity of the grid of random points 
 
 
Random points are generated and tested within a loop: 
 
    for (n = nPoints;   n > 0;   n––) {  // A loop that goes down to 
                                         //   0 is slightly more 
                                         //   efficient. 
 
        x = a + double(rand()) * ((b–a) / RAND_MAX); 
        y = ... 
        ... // if (y <= f(x)) increment count  
        ... 
    } 

 

10.2 Case Study: Estimating the Perimeter of 
an Ellipse 

 
The program below uses Monte Carlo to estimate the perimeter of an ellipse.  This 
number may be useful, for example, for finding the length of the elliptical orbit of 
a planet or a satellite.  The Earth's equator is not quite round, but slightly elliptical, 
too.  In a special case, when the ellipse is a circle, the perimeter (circumference) is, 
of course, simply 2πR.  In the general case the perimeter can be expressed as 4ER, 
where 2R is the major axis of the ellipse and E is the so-called elliptic integral.  E 
is equal to the area under the curve  
 

f x x( ) sin= −1 1
2

2  
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from x=0 to x=π/2  (Figure 10-3).  The coefficient 1
2  corresponds to the particular 

elongation of the ellipse that we have chosen.*  
 
Note that we have started with the problem of finding the length of a curve 
(ellipse) but restated it in terms of finding an integral, which is the area under a 
(different) curve. 

 

    y

                              y x= −1 1
2

2sin
     .

     .       .
          0                  π/2            x  

 
Figure 10-3.   Perimeter of an ellipse is determined by the 

area under the curve 
 
 
The sin(x) function, which calculates the sine of an angle measured in radians, is 
provided in the C++ standard library. 
 

                                                      
 
* The elliptic integral E is defined as: 

 E k x dx= −∫ 1 2 2

0

2

sin

π

 

The parameter k determines the elongation of the ellipse and is usually defined in terms of the modular angle: 
k = sin α. 

F1 F2

α

 
In our test program, we have chosen α = 45o, so k = 2

2  and k 2 1
2= . 
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 MONCARLO.CPP   � 
// MONCARLO.CPP 
// 
//  This program calculates the perimeter of an ellipse. 
//  One quarter of the perimeter of an ellipse with the 
//  larger radius 1 is equal to the so–called 
//  "elliptic integral" E –– the area under the curve 
//  y = sqrt(1 – (k*sin(x))^2) on the interval 0 <= x <= pi/2. 
//  The parameter k describes the shape of the ellipse and is  
//  usually expressed in terms of the so–called "modular angle:" 
//  k = sin(alpha), where alpha is the angle between the minor 
//  axis and the line that connects its end to a focus of 
//  the ellipse.  For a circle, alpha = 0 and k = 0. 
//  The integral is calculated by using the Monte Carlo method. 
// 
//  Author: B. Random 
//  Date: 2/29/1999 
// 
 
#include <iostream.h> 
#include <iomanip.h> 
#include <stdlib.h>   // Declares rand() and RAND_MAX 
#include <math.h>     // Declares sin(x) 
 
const double PI = 3.14159265358979323846; 
 
// Modular angle (in degrees and radians): 
const double alpha = 45; 
const double alpha_radians = alpha * PI / 180.; 
 
// k defines elongation of the ellipse: 
const double k = sin(alpha_radians); 
 
//**************************************************************** 
 
double MonteCarlo (long nPoints) 
 
//  This function calculates the elliptic integral E. 
//  It generates "nPoints" (pseudo)random points in the 
//  rectangle { 0 <= x <= pi/2;  0 <= y <= 1 }, finds 
//  the fraction of all points that fall under the curve, 
//  and calculates the corresponding fraction of the area of 
//  the rectangle. 
 
{ 
    double x, y, f; 
    long n, count = 0; 

 Continued    ® 
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    for (n = nPoints;   n > 0;   n––) { 
 
        // Generate a random point: 
        //    0 <= x <= pi/2 
        //    0 <= y <= 1 
 
        x = double(rand()) * (.5 * PI / RAND_MAX); 
        y = double(rand()) / RAND_MAX; 
 
        // Calculate 1 – (k * sin(x))^2 
 
        f = k * sin(x); 
        f *= f;                 // Square f 
        f = 1 – f; 
 
        // Increment the counter if the point (x,y) is on or under 
        //   the curve: 
 
        if (y*y <= f) count++; 
          // (more efficient than: if (y <= sqrt(f)) ...) 
    } 
 
    //  count                         E 
    // –––––––  =  ––––––––––––––––––––––––––––––––––––––––– 
    // nPoints     area of rect {0 <= x <= pi/2; 0 <= y <= 1} 
 
    return (double(count) / double(nPoints)) * (.5 * PI); 
} 
 
//**************************************************************** 
 
int main() 
 
{ 
    long n; 
    double ellipsePerim; 
 
    cout << "Enter the number of random points in Monte Carlo ==> "; 
    cin >> n; 
    ellipsePerim = 4. * MonteCarlo(n); 
 
    cout << "The perimeter of the ellipse with a modular angle of " 
         << alpha << " degrees\n" 
         << " and a major axis of 2 units is approximately = " 
         << setprecision(3) << ellipsePerim << endl; 
 
    return 0; 
} 
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The output of the program is 5.407 for 100,000 points — quite close to the 5.4024 
value from the table of elliptic integrals. 
 
 

10.3 Lab: Estimating π  Using the Monte Carlo 
Method 

 
The purpose of the lab is to find out whether you can get a good approximation of 
π by using a Monte Carlo method.  The easiest way to get π with Monte Carlo is 
from the formula for the area of a circle.  As we know, the area of a circle of radius 
R is π R2.  The area of a quarter of a circle with a radius of 1 and the center at (0,0) 
should be equal to π/4.  We can estimate that area by generating random points 
(x,y) uniformly distributed over the square { 0 ≤  x  ≤ 1;  0  ≤  y  ≤ 1}.  A point (x,y) 
is inside the circle when  x2 + y2 ≤ 1. 
 
Modify the program shown in the previous section to get an estimate of π, and 
experiment with different numbers of random points used.  Compare the results 
with the actual value of π. 
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11.1 Discussion 
 
In a C++ assignment statement 
 
    a = b; 

 
the variables a and b play different roles.  Think of a as a place and b as a thing: b 
tells which value the program should use, and a tells where to put it.  Anything 
that can be on the left side of the assignment operator is called lvalue (from “left 
value”) and anything on the right side rvalue (from “right value”).   
 
Any valid expression can be used as an rvalue.  For example, we can write 
 
    a = b + 1; 

 
Not so for lvalues.  If we write 
 
    a – 1 = b; 

 
the C++ compiler generates an error message, “lvalue required in ...”  a–1 is not an 
lvalue. 
 
Note that the word “address” has been carefully avoided in our discussion, as if it 
were inappropriate to mention it in good society — the menial job of dealing with 
the actual addresses of variables has been left to the C++ compiler.  This has made 
our lives much easier, but it has also prevented us from doing many useful things.  
Now the time has come to bring addresses explicitly into our programs. 
 
C++ offers not one, but two parallel mechanisms for dealing with addresses: 
pointers and references.  Pointers are an older mechanism that C++ inherited from 
C along with many traditional C idioms and methods of handling arrays and linked 
structures.  Some standard C++ library functions, left over from C, use pointers as 
arguments and/or return values.  References are a newer method that originated in 
C++.  C++ class libraries, especially I/O stream operators and functions, use 
references.  Thus, we have no choice but to learn and use both. 
 
Both pointers and references are variables (or constants) that hold 
memory addresses as their values.  The two mechanisms use two different 
notations, and each mechanism has its own traditional uses. 
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The rest of this chapter explains the use of pointers and references for the 
following purposes: 

• Passing arguments to functions by reference (i.e., passing the argument's 
address, as opposed to its value, to a function). 

• Dynamic memory allocation  (i.e., temporarily grabbing a chunk of free 
memory for use in your program).  

• Using pointers or references as return values from functions. 
 
In Part 2 we will see how pointers are used to create linked structures such as 
linked lists.   But the first step is to learn how to declare pointers and references 
and assign values to them. 
 

11.2 Pointers and References: Declarations 
and Assignments 

 
For any built-in or user-defined data type, SOMETYPE, C++ provides two 
automatically defined data types.  One is designated SOMETYPE* and called “a 
pointer to SOMETYPE” (or “SOMETYPE pointer”); the other is designated 
SOMETYPE& and called “a reference to SOMETYPE” (or “SOMETYPE reference”).  
For example, a variable of the data type double* is a pointer to a double; a 
variable of the type double& is a reference to a double. 
 
Variables or constants of both double* and double& types hold the addresses in 
computer memory of variables (or of symbolic constants) of the type double. 
 
In general, variables (or constants) of both the SOMETYPE* and 
SOMETYPE& types hold addresses of variables (or of symbolic constants) of 
the type SOMETYPE.  The difference between SOMETYPE* and SOMETYPE& 
is in notation: in how the pointers and references are declared, initialized, 
and used in programs. 

 
C++ provides the operator “address of,” which is denoted by the & symbol.  It can 
be applied to a variable, a symbolic constant, or to an element of an array, and 
returns its address in the form of a pointer of the corresponding type.  For example, 
if we have 
 
    double x; 
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then the expression &x means “address of x” and has the type double* (“a pointer 
to a double”).  We can declare a variable, say  px, of the type double* and 
initialize it to the address of x: 
 
    double x; 
    double* px = &x;  // Variable px is a pointer to a double; 
                      //   Its initial value is the address of x. 

 
As we have already mentioned, pointers and references offer similar capabilities 
but use different syntactic notation.  We can declare a variable, say rx, of the type 
double& (reference to a double) and initialize it to the address of x: 
 
    double& rx = x;   // Variable rx is a reference to a double; 
                      //   Its initial value is the address of x. 

 
Note that when initializing the pointer px, you must explicitly apply the & 
(“address of”) to x.  When you are initializing the reference rx, the & is implicit: 
the compiler knows it has to take the address of x (as opposed to its value) because 
it is initializing a reference variable. 

a a a 

Pointers and references are peculiar variables.  Their values are memory addresses 
which are represented by some positive integers and are usually expressed “in hex” 
(hexadecimal notation).  You can take a look at one if you want to.  For example: 
 
#include <iostream.h> 
 
int main() 
 
{ 
    double PI = 3.14; 
    double* ptrPI = &PI;   // Declares a variable ptrPI and  
                           //   initializes it to the address of the 
                           //   previously declared variable PI. 
 
    cout << "Value of PI = " << PI << endl; 
         << "Address of PI = " << ptrPI << endl; 
 
    return 0; 
} 

 
The output may be something like 
 
Value of PI = 3.14 
Address of PI = 0x194a0ffc 
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We never use the exact numeric values of pointers or references in 
programs because these values are determined at run time and may be 
different each time we execute our program depending on where the 
program is loaded in memory. 

 
The things that we can do with pointers and references are the following: 
 

1. We can assign addresses of variables or constants to pointers and initialize 
references. 

2. We can get hold of or modify the value stored at a given address, (i.e., the 
value “pointed to” by a pointer or “referred to” by a reference). 

3. We can copy the values of pointers  to other pointers. 
4. We can pass pointers and references to functions. 
5. We can increment or decrement addresses, or, in general, calculate a new 

address by adding an offset (a positive or a negative integer) to a given 
address. 

 
The latter capability, called “pointer arithmetic,” is convenient for handling built-
in arrays.  There is a close relationship between built-in arrays and pointers, but the 
apvector class hides this relationship from programmers and obviates the pointer 
arithmetic.  The relationship between built-in arrays and pointers is discussed in 
Appendix B. 

a a a 

You might wonder why we need pointers and references of different types.  An 
address is an address, whether it points to an int, a char or a double.  And in a 
typical computer, all addresses are represented in the same way. 
 
Different pointer and reference types are needed only at the logical level 
to maintain the integrity of C++ data type checking, conversions, and 
input/output operations, and to support pointer arithmetic. 

 
If necessary, one pointer type can be converted into another pointer type using the 
cast operator.  For example: 
 
    ... 
    int* pn;           // pn is pointer to int 
    char* pc;          // pc is pointer to char 
    ... 
    pc = static_cast<char *> (pn); 
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The cast is purely logical — nothing actually happens to the address represented 
by a pointer.  C++ provides a “generic” pointer type, void*, which can be cast 
into any specific pointer type when necessary. 

a a a 

Let us consider the following declarations: 
 
    ... 
    char c = '$';   // c is a char initialized to '$'. 
    char* p = &c;   // p is a char* (pointer to char) initialized 
                    //  to the address of c. 
    char& r = c;    // r is a char& (reference to char) initialized 
                    //  to the address of c. 
    ... 

 
The initialization of a pointer is optional — you can assign its value later — but a 
reference must be initialized to some address when it is declared, and that address 
cannot be changed. 
 
In the above examples, we have been using double* or char& for the 
corresponding type names.  In C++ syntax, however, the * or & symbol does not 
have to be attached to the type name.   We can let it hang freely in the middle or 
attach it to the declared variable (or constant) name instead: 
 
    Identical declarations: 
 
    char*  p; 
    char * p; 
    char  *p; 
 
    char&  r; 
    char & r; 
    char  &r; 

 
Moreover, we can have several variables of types SOMETYPE, SOMETYPE* and 
SOMETYPE& interspersed in the same declaration list.  For example: 
 
    char c, *p = &c, &r = c;  // Declares: 1. char c; 
                              //           2. char* p, initialized to 
                              //              the address of c; 
                              //           3. char& r, initialized to 
                              //              the address of c. 

 
This kind of a declaration list is rather common.  Note the multipurpose use of the 
& symbol as both the “address of” operator (e.g. ...= &c) and the reference type 
indicator (as in &r=...) in declarations. 
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Because such lists can separate a variable from its antecedent data type, it is better 
to attach the * or & symbol to the name of the declared variable rather than to the 
data type name.  From now on, we will adhere to this practice and use 
 
    SOMETYPE *c; 

 
instead of 
 
    SOMETYPE* c; 

a a a 

Ultimately, the raison d'être for pointers and references is the values to which they 
point or refer. 
 
If p is a pointer, *p represents the rvalue or lvalue to which p points. 

 
Consider carefully the following example, which illustrates what pointers are all 
about: 
 
    ... 
    char aVar = 'A', 
         bVar = 'B'; 
    char *p = &aVar;         // p is declared as a char* variable. 
                             //   p is initially set equal to the 
                             //   address of aVar (*p temporarily 
                             //   becomes an alias to aVar). 
    cout << *p << endl;      // Output: A 
    p = &bVar;               // Set p to address of bVar. 
    cout << *p << endl;      // Output: B 
 
    p = &aVar;               // Set p to address of aVar again. 
    *p = 'Z';                // (Indirectly) set aVar to 'Z'. 
    p = &bVar;               // Set p to address of bVar. 
    *p = 'Y';                // (Indirectly) set bVar to 'Y'. 
    cout << aVar 
         << bVar << endl;    // Output: ZY 
    ...     

 
Note that both p and *p can be used both as rvalues and lvalues — they are found 
both on the right and left sides of assignment statements.  Also note the 
multipurpose use of the * symbol: as a pointer type indicator in declarations and as 
the dereference operator, which transforms a pointer into the value (lvalue or 
rvalue) to which it points. 
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With references the notation can be confusing at first, because reference variables 
are used in an unusual way.  For any “normal” variable x, the name x in the 
program represents either its own lvalue (location) if x is in the left side of an 
assignment, or its own rvalue (value) if x is in the right side of an assignment.  
Thus, the statement 
 
    x = x + 1; 

 
actually means: “Take the value of x, add 1, and save the result in the location 
reserved for x.”  However: 
 
If r is a reference variable, the name r represents not its own location or 
value but, indirectly, the location or value at the address contained in r . 

 
Thus, the statement 
 
    r = r + 1; 

 
means: “r contains some address.  Take the value at that address; add 1; save the 
result in the location at that address.” r's own value (which is that “some address”) 
does not change.   
 
If r is a reference variable, &r represents r's own value; that is, the 
address to which r refers. 

 
In some older compilers &r could be used as either an lvalue or an rvalue, but now 
its use is restricted to rvalue, so &r = ... is not allowed. 
 

11.3 Passing Arguments to Functions by Reference 
 
Reference variables in programs are used primarily for passing arguments to 
functions by reference. 
 
In one of the previous sections we described the Sort(…) function, which 
included code to swap the values of two elements in an array.  It may be 
reasonable to implement this code as a separate function, Swap(…).  Let us try to 
implement and test the Swap(…) function: 
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#include <iostream.h> 
 
void Swap (double x, double y) 
 
// Trying to swap x and y... but it does NOT work! 
 
{ 
    double temp; 
 
    temp = x; 
    x = y; 
    y = temp; 
} 
 
int main() 
 
{ 
    double x = 1.111, y = 2.222; 
 
    cout << "x = " << x << " y = " << y << endl; 
    Swap(x,y); 
    cout << "x = " << x << " y = " << y << endl; 
    return 0; 
} 

 
When we compile and run the program, the output is: 
 

x = 1.111 y = 2.222                                                  � 
x = 1.111 y = 2.222 

 
Nothing happened — the numbers have not been swapped.  To explain why, we 
need to understand the way C++ code calls functions.  When a function is called, 
the arguments are made available to the function by copying them to a place where 
the function can reach them.  This place may be a frame on the system stack — an 
area in memory pointed to by a special Stack Pointer (SP) CPU register.  The 
function code has access to the SP and therefore knows where to find the 
arguments.  Some compilers have the option of placing the arguments into general 
purpose CPU registers.  In any event, the values of arguments are copied into a 
new location. 
 
Inside a function, its arguments act as new variables whose values have 
been initialized to values passed to the function by the calling code.  The 
arguments play the same role as local (temporary) variables, and they 
disappear after the function is exited. 
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In the “Swap” example, x and y in main() and x and y in the Swap(…) function 
represent different memory locations, despite the fact that we chose to give them 
the same names.  So only the temporary copies of x and y swap places.  The 
originals remain intact. 
 
Our mistake was that we passed the values of x and y to Swap(…).  This is called 
passing arguments by value.  To correct the situation, we need to give Swap(…) 
access to the addresses of x and y — a method known as passing arguments by 
reference.  Naturally, C++ provides two ways of doing this, through either 
pointers or references. 
 
The older method, using pointers, is inherited from C.  In this method we declare 
the arguments of the Swap(…) function as having the double* (pointer to a 
double) type and explicitly pass the addresses of x and y to the function when we 
call it: 
 
#include <iostream.h> 
 
void Swap (double *px, double *py) 
 
// Swaps *px and *py 
// 
//  *** Older style, uses pointers *** 
// 
 
{ 
    double temp; 
 
    temp = *px; 
    *px = *py; 
    *py = temp; 
} 
 
int main() 
 
{ 
    double x = 1.111, y = 2.222; 
 
    Swap(&x, &y);          // pass addresses of x and y to Swap(...) 
    ... 
} 

 
The newer, C++ method uses references.  In this method, the arguments to 
Swap(…) are declared to be of the double& (reference to a double) type. When we 
call Swap(x,y), the compiler automatically passes the addresses of x and y to the 
function instead of their values, because that is what the function expects: 
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#include <iostream.h> 
 
void Swap (double &x, double &y) 
 
// Swaps x and y, passed by reference. 
// x and y become aliases of some variables in the calling 
//   function. 
 
{ 
    double temp; 
 
    temp = x; 
    x = y; 
    y = temp; 
} 
 
int main() 
 
{ 
    double x = 1.111, y = 2.222; 
 
    Swap(x,y);          // Passes references to x and y to Swap(...) 
                        //   (because Swap expects arguments of the 
                        //   reference type). 
    ... 
} 

 
Note that the only thing we have changed from our original misguided attempt is 
one line in the Swap(…) definition, where we have added two &'s.  This simplicity 
is what makes references convenient. 
 
In the future, we will always use references rather than pointers when we need to 
pass the address of a variable to a function. 
 
Arguments passed as references must be lvalues.  If we write something like: 
 
    ... 
    Swap(x, y+1) 
    ... 

 
the compiler will generate an error message because y+1 is not an lvalue. 
 
Passing arguments by reference may be done for two reasons.  We need 
to pass an argument by reference if we want to modify or calculate its 
value inside the function.  We may also want to pass an argument by 
reference if the argument takes a lot of space. 
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Copying a value of a built-in data type to the stack is not a problem, but when we 
deal with user-defined data types such as vectors, matrices, or structures 
(Chapter 13), we realize that copying a large object is inefficient.  It is better to 
pass such an argument by reference (that is, to copy to the stack only its address) 
even if we do not want to modify it. 
 
If we pass an argument to a function by reference but want to protect that argument 
from being changed inside the function, we can use the const keyword: this in 
effect casts the function argument as a constant and therefore forbids the function 
code to change it: 
 
void MyFunction(const SOMETYPE &x)    // x is passed by reference 
                                      //   only for efficiency; 
                                      //   Its value remains unchanged. 
{ 
    ... 
} 

 
 

11.4 Lab: Quadratic Formula 
 
Define and test a function that finds the solutions of a quadratic equation 
 
  ax bx c2 0+ + =  
 
Make it a Boolean function that returns true if real solutions exist and false 
otherwise. Pass the coefficients a, b, and c by value.  Place the calculated solutions 
into two variables passed to the function by reference. 
 
Recall that the formulas for the solutions of a quadratic equation are: 
 

  x
b b ac

a
x

b b ac
a1

2

2

24
2

4
2

=
− + −

=
− − −

 

 
You will need to use the sqrt(double z) standard library function for 
calculating the square root.  It is declared in math.h. 
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11.5 The Null Pointer 
 
A pointer of any type can be set to 0.  This is often used in programs to 
indicate that the pointer does not currently point to anything meaningful. 
 
Some programmers use the symbolic constant  NULL, defined as 0, specifically for 
inactive pointers.   NULL is a relic from C, and it can be found in one or several 
header files.  It is defined as: 
 
#define NULL 0 

 
or, for “large memory models,” as: 
 
#define NULL 0L     // Long integer equal to 0 

 
It may be also defined as: 
 
const void *NULL = 0; // Pointer of the type "void *" set to 0. 

 
In many C++ compilers, the NULL definition is included in iostream.h. 
 
C++ programmers often write simply 0 in their programs but refer to it 
as “null” when they talk about it. 

 
A pointer of any type can be also compared to null.  For example: 
 
    if (p != 0)   // if p is not null ... 
        ... 

 
or, simply: 
 
    if (p)     // non–zero value means true, null means false. 
        ... 
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11.6 Dynamic Memory Allocation: new 
and delete 

 
When we declare a variable, a symbolic constant, or an array, the compiler 
automatically allocates memory for it.  If a constant, a variable, or an array is 
declared outside of any function (or, if the declaration is preceded with the 
keyword static), the memory is allocated in the special, permanent static 
memory segment of the program.  If a variable or an array is local (declared inside 
a function), then the memory is allocated temporarily on the system stack and  
released when the function is exited. 
 
C++ provides a mechanism for allocating a contiguous block of memory 
explicitly at any time in the program.  Each program has a special pool of 
free memory, called the free store.  A program may request some space 
from the free store to hold a value or an array of the specified (built-in or 
user-defined) data type.  This is accomplished by using the new operator.  
The new operator returns a pointer of the appropriate data type, which 
points to the reserved space. 

 
In the following code, SOMETYPE stands for some built-in or user-defined type: 
 
    int n; 
    SOMETYPE *s, *t; 
    ... 
    n = 100; 
    ... 
    s = new SOMETYPE;          // Allocates one location of SOMETYPE. 
    ... 
    t = new SOMETYPE[n];       // Allocates an array of n 
                               //   locations of SOMETYPE. 

 
The first new reserves one location of the type SOMETYPE and returns a pointer to 
it, which is then assigned to s.  The second new reserves an array of n=100 
elements of the type SOMETYPE and returns a pointer to its first element, which is 
assigned to t.  The size of the requested array is essentially an argument given to 
the new operator.  It is specified inside the square brackets and can be any 
expression that evaluates to a positive integer. 
 
The new operator may fail if the program runs out of memory.  In that case, it 
returns a null pointer.  It is a good idea to check the pointer returned by new and 
take some corrective action or display an error message if it returns a null.  For 
example: 
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void MyFunction() 
{ 
    char *p; 
 
    ... 
    p = new char[10000]; 
    if (!p) { 
        cout << "Memory allocation error in MyFunction.\n"; 
        return; 
    } 
    ... 
} 

a a a 

Memory allocated with new remains at the program's disposal until it is explicitly 
returned to the free store by the delete operator.  delete has the following 
syntax: 
 
    delete s;             // Deallocate one memory location pointed 
                          //   to by s. 
    ... 
    delete [] t;          // Deallocate an array pointed to by t. 

 
new and delete work as a pair.  new reserves a contiguous block of 
memory in the free store and returns a pointer to it.  The memory 
remains at the program's disposal until it is freed by the delete 
operator.  delete returns the memory pointed to by a pointer to the free 
store.  This mechanism is called dynamic memory allocation. 

 
The words “new” and “delete” do not imply, of course, that a new block in the 
computer memory is created and then deleted.  These words should be construed to 
mean that a new entity (a pointer of a particular data type and a memory location to 
which it points) is created and later deleted from the realm of your program. 
 
new and delete do not have to be called within the same function, but 
the program must somehow maintain the pointer returned by new, and it 
must use delete  to free the memory before exiting. 

 
The dynamic memory allocation mechanism maintains its own internal list of sizes 
and addresses of all allocated memory blocks.  That is how delete knows how 
many bytes it has to return to the free store.  delete can only delete a pointer 
allocated with new, but “deleting” a null pointer is permitted and has no effect. 

a a a 
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Dynamic memory allocation plays an important role in the implementation of the  
apvector and apmatrix classes.  When we declare a vector of a certain size, the 
code dynamically allocates a memory buffer of that size and places the pointer to 
that buffer into the vector descriptor.  When the apvector variable goes out of 
scope, the code calls the delete operator to release its memory buffer. 
 
Since in this book we use apvector and apmatrix classes instead of built-in 
arrays, it is never necessary to allocate an array.  The apvector class does it for 
us.  Therefore, we only need to use 
  
    s = new SOMETYPE;          // Allocates one location of SOMETYPE. 

and 
    delete s; 

 
There is no need for 
 
    t = new SOMETYPE[n];       // Allocates an array of n 

and 
    delete [] t; 

a a a 

It would make little sense to dynamically allocate a simple int or double 
variable because it can be declared (allocated automatically on the stack), and it 
may take less space and may be easier to handle than a pointer to a dynamically 
allocated location.  Dynamic memory allocation is useful primarily for the 
following purposes: 

1. Allocating a temporary (local) array that is too large for the system stack. 

2. Allocating an array whose size is not known in advance but rather calculated 
or entered at some point in the program. 

3. Implementing classes, such as apvector and apmatrix. 

4. Allocating structures, especially nodes of linked data structures: lists, trees, 
etc. 

 
It is this last use that is most important to us here.  Unfortunately, we are not quite 
ready to explain it fully until we know what structures, nodes, and linked lists are.  
At this point, we have to be content with the following informal explanation. 
 
In C++, you can define a new data type that combines several data elements, often 
of different data types.  The new type may be defined using the keyword struct: 
 
struct SOMETYPE {  // Defines a new data type SOMETYPE as a structure 
   ... 
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}; 
 
One or more elements in the structure may be pointers to other structures.  In 
particular, one element of a structure may be a pointer to another structure of the 
same type.  Let us consider, for example: 
 
struct NODE { 
   int info; 
   NODE *next;   // "next" is a pointer to NODE 
}; 

 
You can dynamically allocate a series of NODE structures using the new operator.  
You can set the value next in the first node equal to the pointer to the second 
node.  In general, you can set the next pointer in each “node” to the  following 
“node” (except the last node, in which next is set to null).  In this way you create 
a linked list of nodes in which each node contains, as one of its data elements, the 
pointer to the “next” node.  Data structures of this kind are very flexible.  You can 
insert, remove, and rearrange the elements of a linked list by manipulating a 
pointer or two rather than moving many bytes in memory.  Structures are discussed 
in detail in Chapter 13, and linked lists in Part 2. 
 

11.7 Returning Pointers or References 
from Functions 

 
In C++, functions can return pointers or references as well as other data types.  A 
function that returns a pointer is declared as: 
 
SOMETYPE *MyFunction(...) 

 
and a function that returns a reference is declared as: 
 
SOMETYPE &MyFunction(...) 

 
where SOMETYPE stands for a built-in or user-defined data type. 
 
In what situations do we need such functions?  To what may the returned pointer 
or reference point or refer?  There are three possibilities: 

1. The returned pointer may point to a variable (or an array) dynamically 
allocated within the function. 

2. The pointer may be derived from the function arguments and point to an 
array or some element of the array passed to the function as an argument. 
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3. The pointer may point to some global constant, variable, array, or array 
element declared outside the function. 

 
The returned pointer can be also null, indicating that it does not point to anything.  
Some of the above possibilities also apply to references. 
 
A pointer or reference returned from a function should never be set to 
the address of a local variable or local array in that function, because 
when the function is exited, all local variables are destroyed.  The pointer 
or reference will be left dangling — pointing to some vacant area on the 
system stack.  The value at that location is undetermined, and writing 
anything to that location may crash the system.  So such a pointer would 
be both useless and dangerous outside the function. 

 
In this book we will be concerned primarily with the following two situations. 
 
A function returns the pointer to a variable that was dynamically allocated inside 
the function: 
 
SOMETYPE *MyFunction(...) 
{ 
    SOMETYPE *p; 
    ... 
    p = new SOMETYPE; 
    ... 
    return p; 
} 
 

A function returns a reference originally passed to the function as an argument: 
 
SOMETYPE &MyFunction(SOMETYPE &arg, ...) 
{ 
    ... 
    return arg; 
} 
 

In particular, C++ stream I/O functions and operators often return a reference to 
the same stream.  For example, the put member function that writes a character to 
a file returns the data type ostream& (reference to an output stream) and returns 
the reference to the stream for which it is called: outFile.put(ch) returns 
outFile.  The same is true of other stream member functions and the insertion 
and extraction operators.  That is why we can chain together several insertion 
operators: 
 
    cout << a << b << ...  
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Or, rather strange (and not advised): 
 
    cout.put('H').put('i').put('!') << endl; // Prints "Hi!\n" 
    ... 
    (cin >> ch).ignore(80, '\n');  // read one char, ignore the rest 

 

11.8 Summary 
 
For any data type SOMETYPE, there are two other data types that are automatically 
defined in C++: SOMETYPE* (a pointer to SOMETYPE) and SOMETYPE& (a 
reference to SOMETYPE).  Both can hold the address of a variable,  a symbolic 
constant, or an array element of the data type SOMETYPE. 
 
Pointers and references must be initialized to some address before they can be 
used.  A pointer can be also set to null (zero) to indicate that it does not point to 
anything meaningful. 
 
References are used primarily for passing arguments to functions “by reference,” 
i.e., passing the argument's address instead of its value to a function.  If a function's 
argument is declared to be of reference type, the compiler automatically knows to 
pass its address, as opposed to its value, to the function.  For example: 
 
// The Swap(...) function takes arguments 
//   of double& (reference to double) type. 
 
void Swap (double &x, double &y); 

 
The function is called as usual: 
 
    Swap(a, b); 

 
but x and y inside the function become aliases for a and b in the calling code. 
 
A C++ program can at any time request a contiguous block of memory sufficient 
to hold a value or an array of values of a specified data type, SOMETYPE.  The 
memory is allocated from a pool of free memory, called the free store, using the 
new operator.  For example: 
 
    SOMETYPE *p; 
    p = new SOMETYPE;  // Allocate a variable of the specified type. 
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The allocated memory remains at the program's disposal until it is explicitly freed 
and returned to the free store using the delete operator: 
 
    delete p; 

 
The mechanism provided by the new and delete operators is called dynamic 
memory allocation.  It is useful for allocating temporary arrays, allocating arrays 
whose size is not known in advance, and creating new “nodes” in linked data 
structures such as linked lists, trees, and so on.  Pointers are indispensable for 
creating and updating such structures. 
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12.1 Discussion 
 
Processing text constitutes a large part of computer applications.  Text is handled 
in  reading and parsing text files (such as the source code of computer programs), 
word processing, data entry, communications, and so on. Segments of text are 
stored in character arrays, which C++ programmers refer to as character strings.  
An array may be larger than the actual text string it is holding at the moment, so 
the program needs to know where the string ends. 
 
C++ has no built-in mechanism for maintaining the length of a string.  Instead, C 
and C++ programmers place a special marker, a null character, at the end of each 
string.  The null character (not to be confused with the null pointer) is simply a 
character constant with the value 0. 
 
It is better to use the “escape” character constant '\0' rather than 
simply 0 to denote the null character in your code.  This emphasizes that 
the null character has the data type char and that your code is dealing 
with characters rather than integers. 

 
C++ syntax allows programmers to use literal character strings (text in double 
quotes): 
 
    char hello[14] = "Hello, World!"; 

 
A null character is automatically appended at the end of a literal string.  (Note that 
the string is declared as an array of fourteen characters to leave space for the null 
character after the phrase’s thirteen characters.) Other than that, a null character is 
neither required nor automatically assumed to be present anywhere in C++ syntax 
— it is simply a convention used by C/C++ software developers, standard library 
functions that deal with strings, and input/output classes.  Character arrays that 
hold text and follow the null termination convention are referred to as 
null-terminated strings. 
 
The null character can be tested for in Boolean expressions.  As usual, any 
non-zero value represents “true” and the null character (zero) means “false.”  If s 
is a pointer to a string, then *s (the character currently pointed to by s) can be 
checked for zero value as the terminating condition in a loop as s advances along 
the string.  This was widely used  in C idioms.  Sometimes, though, compact and 
idiomatic formulation can cross the line into obscurity: 
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    // Copy string s1 to s2: 
    while (*s2++ = *s1++);          // Get it? 

 
C compilers have many functions in the standard library for handling null-
terminated strings.  These functions are available in all C++ compilers as well.  But 
most C++ programmers prefer to use a special string class, because it is easier to 
use and helps to avoid bugs.  A string class is provided in class libraries that come 
with compilers and in various libraries of classes created by organizations or 
individual programmers.  The implementation of a string class may still be based 
on null-terminated strings, but the details are hidden from the programmer who is 
using the class: she only needs to know the class interface — that is, the 
convention for using the class operators and functions. 
 
In this book we will use the apstring class provided by the AP C++ 
Development Committee.  The Committee recommends that students always use 
the apstring class for representing and handling strings. 
 
In this chapter we will study the following topics related to strings: 
 
• String constants 
• Standard library functions for null-terminated strings 
• Stream I/O functions and operators for strings 
• How to use the apstring class (Section 12.5 and Labs 12.6 and 12.7). 
 

12.2 Literal Strings 
 
A literal string is a string of characters in double quotes.  The string may 
include “escape” characters such as '\t' (tab), '\"' (double quote), 
'\n' (newline), etc.  A null character, '\0',  is automatically appended 
at the end of a literal string. 

 
The number of bytes required to store a literal string is one more than the length of 
the string — one byte is added for the null character.  For instance, the string 
"Wow" takes 4 bytes.  "" (two double quotes with nothing in between) represents 
an empty string, which consists of only the null character and takes one byte. 
 
Literal strings are used in two different ways: (1) for initializing 
character arrays and (2) as initial values of pointers or as char* values 
(rvalues) in expressions. 
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It is important to distinguish these two situations because the strings are stored in 
different places in computer memory depending on the situation.  When a string is 
used to initialize a character array, it is placed into that array.  When a string is 
used to initialize a pointer, it is stored in the special segment of the program's 
memory which holds program constants. 
 
Let us consider array initialization first: 
 
    char msg[20] = "Hello"; 

 
When a character array is initialized to a literal character string, the 
string and its terminating null character are simply placed into the array. 

 
The compiler checks that the size of the array is large enough to hold the string and 
its terminating null (although some compilers simply drop the null if there is no 
room for it).  If the string is too long, the compiler reports an error.  The above 
declaration is simply shorthand for: 
 
    char msg[20] = {'H', 'e', 'l', 'l', 'o', '\0'}; 
     // msg[0] = 'H', ..., msg[5] = '\0', 
     // msg[6] ... msg[19] remain not initialized. 

 
A programmer can leave it to the compiler to calculate the length of the array by 
omitting its size in the declaration.  For example, 
 
    char msg[] = "Hello"; 

 
is the same as: 
 
    char msg[6] = "Hello"; 

a a a 

Now let us see how literal strings are used as pointers.  In the following 
declaration, the char* variable name is initialized to “Sunshine”: 
 
    char *name = "Sunshine"; 

 
The string “Sunshine” (with its terminating null) is stored in the program's memory 
together with other constants, and the pointer name is set to the address of the 
string's first character. 
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When a literal string is used in an expression or as a function argument, 
it is treated as a pointer (of the char* data type) pointing to the first 
character of the string. 

 
In the following code, for example, the char* variable errMsg is set to point to 
different literal strings depending on the circumstances: 
 
    char *errMsg = 0;  // Pointer errMsg is initialized to 
                       //   the null pointer. 
    ... 
    if (...) 
        errMsg = "File does not exist."; 
    ... 
    if (...) 
        errMsg = "Memory allocation error."; 
    ... 
    if (errMsg)        // if errMsg is not a null pointer... 
        cout << errMsg << endl; 

 
Note that in the above code errMsg is a pointer, not an array.  When the program 
is running, the text strings are not copied anywhere; only the address in errMsg 
changes its value. 
 
C++ programmers can also declare arrays of pointers and initialize them to 
addresses of literal strings.  For example: 
 
char *nameOfDay[7] = {   // Array of 7 pointers to char. 
    "Sunday", 
    "Monday", 
    "Tuesday", 
    "Wednesday", 
    "Thursday", 
    "Friday", 
    "Saturday" 
}; 

 
The above declaration allocates an array of seven pointers to char.  The 
null-terminated strings, “Sunday” etc., are placed somewhere in the segment of the 
program's memory that holds constants, and the pointers in the array are set to the 
respective addresses of those strings. 

a a a 

A confusion between the two situations — when an array is initialized with a 
literal string, and when a pointer is set to point to a literal string — leads to bugs 
that are hard to find.  This is another good reason for using a string class. 
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A typical string class allows a programmer to initialize a string class 
object (variable) with a literal string and to assign a value to a string class 
variable from a literal string. 

 
For example: 
 
#include "apstring.h"     // Include the definition of the apstring 
                          //   class into your program. 
... 
    apstring str1 = "Hello"; 
                          // Declare a variable str1 of the type 
                          //   apstring and assign it the value "Hello" 
 
    apstring str2; 
    str2 = "Sunshine";    // Assign the value "Sunshine" to str2. 
    ... 

 
In both the declaration and assignment above, the characters from the literal string 
are actually copied into the internal character buffer associated with each 
apstring object. 
 

12.3 Standard Library Functions for Strings 
 
The standard C++ library provides many functions for handling null-terminated 
strings and converting text to numbers.  The following list presents several 
commonly used string functions.  If you want to learn about all the functions 
available, refer to the compiler documentation or on-line help. 
 
The string functions are declared in the string.h header file. 
 
unsigned strlen(const char *s); 
   // Returns the length of the string s (the character count 
   //   excluding the null character). 
 
char *strcpy(char *dest, const char *src); 
   // Copies the string src into dest. 
   // Returns a pointer equal to dest. 
 
char *strcat(char *dest, const char *src); 
   // Appends the string src to the string at dest. 
   // Returns a pointer equal to dest. 
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char *strchr(const char *s, int c); 
   // Returns a pointer to the first occurrence of 
   //   the char c in the string s, or a null pointer if not found. 
   //   c is declared as int, but normally a char is used. 
   //   For example: 
   //       dot = strchr(fileName, '.'); 
   // (The terminating null is considered a part of the string, so 
   //       strchr(s, '\0') returns a pointer to the 
   //       terminating null.  This can be useful.) 
 
int strcmp(const char *s1, const char *s2); 
   // Returns 0 if s1 and s2 are identical strings. 
   //   Otherwise returns c1 – c2 where c1 and c2 are the 
   //   first pair of different characters in the corresponding 
   //   positions in s1 and s2.  The return value is negative 
   //   if s1 is alphabetically earlier than s2. 
 
char *strstr(const char *s, const char *ss); 
   // Returns a pointer to the first occurrence of the 
   //   substring ss in s, or null if not found. 
 
char *strlwr(char *s); 
   // Converts all letters in the string s into the lower case. 
   //   Other characters remain unchanged. 
   // Returns s. 
 
char *strupr(char *s); 
   // Converts all letters in the string s into the upper case. 
   //   Other characters remain unchanged. 
   // Returns s. 

 
The standard library also contains conversion functions for reading a number from 
a string.  These functions are declared in stdlib.h.  (In some compilers, 
atof(…) may be declared in math.h.) 
 
int atoi(const char *s); 
   // Converts an ASCII string (optional sign, then digits) 
   //   into an integer. 
   // Example:  atoi("–1001") returns –1001. 
 
long atol(const char *s); 
   // Converts an ASCII string (optional sign, then digits) 
   //   into a long integer. 
 
double atof(const char *s); 
   // Converts an ASCII string (optional sign, digits, 
   //   optional decimal point) into a double. 

 
The following code extracts hours, minutes, and seconds from a “time” string of 
the form “hh:mm:ss”: 
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    ... 
    char time[] = "01:12:55"; 
    ... 
    if (strlen(time) != 8) { 
        cout << "Invalid time string.\n"; 
        return; 
    } 
    char *s = time; 
    hour = atoi(s);         // atoi scans the string as long as it 
                            //   finds digits. It will stop at ':'. 
    s = strchr(s,':') + 1;  // Set s to point to the first char 
                            //   after ':'. 
    mins = atoi(s); 
    s = strchr(s,':') + 1;  // Set s to point to the first char 
                            //   after the next ':'. 
    secs = atoi(s); 
    ... 

 

12.4 Input and Output for Strings 
  
Normally, when you output a pointer by passing it to the stream insertion operator 
<<, the output is some memory address in hexadecimal notation.  A pointer to a 
character (char* type) is an exception.  The output stream implementation 
assumes that a char* pointer points to a null-terminated string and outputs that 
string rather than the pointer.  That is why, in the following example, all three 
output statements print “Hello, World!”: 
 
    char a[20] = "Hello, World!"; 
    char *p = "Hello, World!"; 
 
    cout << "Hello, World!" << endl; 
    cout << a << endl; 
    cout << p << endl; 

 
Note that the insertion operator << does not automatically append a newline 
character at the end of a null-terminated string.  You have to supply the newline 
character separately by inserting endl or '\n' after the string: 
 
        // Three equivalent ways to output a line of text: 
    cout << "A rose by any other name would smell as sweet,\n"; 
    cout << "A rose by any other name would smell as sweet," << endl; 
    cout << "A rose by any other name would smell as sweet," << '\n'; 

a a a 

The extraction operator >> assumes that a char* argument points to a character 
array and reads a string of characters into that array.  There are, however, two 
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problems.  First, the array must be large enough to hold the string.  If a 
mischievous user enters a very long string, it will overrun the declared array and 
overwrite some memory in your program.  Second, the extraction operator reads 
only one “word”.  It skips all white space (spaces, tabs, newline characters) 
preceding the string, reads a contiguous string without any white space characters 
in it, and stops reading when it encounters the first white space character or the end 
of file.  When you execute the following code, for example, 
 
int main() 
 
{ 
    char firstName[30], lastName[30]; 
 
    cout << "Enter your name: "; 
    cin >> firstName >> lastName; 
    ... 

 
and you type:  
 
<TAB>Albert Einstein<SPACE><ENTER> 

 
the program will correctly skip the tab, place “Albert” into firstName (with a 
terminating null) and “Einstein” into lastName (also with a null).  The remaining 
space, newline, and any other input will remain in the input stream.  But what if 
you entered “John J. Jingleheimer Schmidt, Jr.”?  Your program would be better 
off reading the whole string before parsing (analyzing) it to extract the necessary 
information. 
 
The input stream class provides the getline(…) member function for reading a 
whole string of text, including all white space characters. This function takes three 
arguments: a pointer to a character array, a maximum number of characters to read, 
and the “delimiter” character: 
 
cin.getline(char str[], int maxcount, char delim); 

 
The function extracts characters from the input stream (e.g., cin for the keyboard) 
and places them into the str array until one of three things happens: (1) it reads a 
character equal to delim; (2) it reads maxcount–1 characters (leaving one vacant 
space for the terminating null character); (3) it reaches the end of file.  If the 
function encounters the delimiter character, the function extracts it from the input 
stream but does not store it in the array.  getline(…) always adds a terminating 
null to the string. 
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In the following code: 
 
    char line[81]; 
 
    cin.getline(line, 81, '\n'); 

 
getline(…) reads a line of text of up to 80 characters, stops at the newline 
character (placed into the input stream when you hit the <ENTER> key), consumes 
the newline character, and appends a null to the array. 
 
The delim argument is optional: if not specified, it defaults to '\n'.  So: 
 
   cin.getline(line, 81); 

 
is the same as: 
 
   cin.getline(line, 81, '\n'); 

 
If your line (up to and including '\n') is equal to or longer than maxcount, 
getline(…) leaves the tail of the line in the input stream.  Like the other stream 
I/O functions, getline(…) works not just for cin but for any file input stream.  
When the input stream is at the end of file, getline(…) puts the stream into an 
error state, which can be tested as a condition.  For example: 
 
    if (!file.getline(...))   // Read the line.  If failed ... 
        ... 
    while (file.getline(...)) // Call getline while it reads 
                              //   successfully. 
        ... 

 
The following program reads and prints all lines in a text file, splitting the lines 
that are longer than LINELENGTH characters: 
 

  GETLINE.CPP       � 
//  Prints a file, splitting the lines that are longer than 
//    LINELENGTH. 
 
#include <iostream.h> 
#include <fstream.h> 
 
const int LINELENGTH = 32;  // 32 characters per line 
 
int main() 
 
{ 

Continued    ® 
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    char fileName[40]; 
    char line[LINELENGTH+1];   // +1 for the terminating null 
 
    cout << "File name: "; 
    cin >> fileName;           // Read one word into fileName. 
 
    ifstream f1(fileName);     // Open file for reading 
    if (!f1) { 
        cout << "Cannot open " << fileName << ".\n"; 
        return 1; 
    } 
 
    // Read lines while available (until the end of file). 
    while (f1.getline(line, LINELENGTH+1)) { 
        cout << line << endl; 
    } 
 
    cout << "*** END OF FILE ***\n"; 
    return 0; 
} 

 
When compiled and run on the following file: 
 

  LIMERICK.TXT    � 
There once lived a poet named Sage 
Whose lines never fit on a page 

 
the program will print: 
 

File name: limerick.txt                                              � 
There once lived a poet named Sa 
ge 
Whose lines never fit on a page 
*** END OF FILE *** 

a a a 

Unfortunately, the getline(…) function does not tell the program whether it ever 
got to the '\n' character or not.  So there is no easy way to tell whether or not the 
line was too long.  There is another function, get(…), which works exactly the 
same way as getline(…) but leaves the delimiter in the input stream. 
 
The only difference between get(...) and getline(...)  is that 
get(...) always leaves the delimiter in the input stream. 
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You can get rid of the '\n' left by get(…)  together with the unwanted tail of the 
line by using the ignore(…) function: 
 
cin.ignore(int maxcount, char delim); 

 
cin.ignore(…) skips as many as maxcount characters up to and including the 
delimiter character.  You can tell it to skip a large number of characters up to the 
delimiter '\n': 
 
    cin.get(line, 81);      // Read up to 80 characters, 
    cin.ignore(1000, '\n'); // Skip "all" (as many as 1000) chars 
                            //   to the end of the line, including '\n'. 

 
The following is a modified version of the program for printing a file.  In this 
version, the long lines are truncated instead of being split: 
 
//  Prints a file, truncating the lines to the first 
//    LINELENGTH characters. 
 
#include <iostream.h> 
#include <fstream.h> 
 
const int LINELENGTH = 32; 
 
int main() 
 
{ 
    ... 
    // Uses get(...) instead of getline(...) to always leave '\n' 
    //   in the input stream. 
 
    while (f1.get(line, LINELENGTH+1)) { 
        cout << line << endl; 
        f1.ignore(1000, '\n');  // Skips to and consumes '\n'. 
    } 
    ... 
} 

 
This version will print: 
 

File name: limerick.txt                                              � 
There once lived a poet named Sa 
Whose lines never fit on a page 
*** END OF FILE *** 
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12.5 The apstring Class 
 
This section describes the apstring class provided by the AP C++ Development 
Committee.  This class defines a new user-defined data type, apstring, and 
allows us to handle character strings more or less the same way as we handle built-
in data types such as int or double. 
 
The definition of the class and declarations of its functions and operators must be 
included into the program; as usual, they are placed in a header file, apstring.h.  
The actual code for the class functions and operators is placed in the source file, 
apstring.cpp. 
 
apstring.cpp can be compiled separately; it can be integrated with the rest of 
your program using the project management component of your compiler.  Your 
compiler documentation or on-line “help” will tell you exactly how to do it. 
 
The apstring class provides three ways to declare a string: 
 
#include "apstring.h" 
... 
 
apstring str1;            // Declare an empty string; 
apstring str2 = "Hello";  // Initialize to a literal string 
apstring str3 = str2;     // Initialize to a previously defined string 

 
C++ allows programmers to redefine the meaning of standard operators (a feature 
called operator overloading). The apstring class redefines the assignment 
operator as making a copy of a string and the + and += operators as concatenation 
of two strings or appending a character to a string.  This lets us write things like: 
 
apstring h = "Hello", s; 
 
h += ", "; 
s = h + "Sunshine" + '!'; 
// Now the value of s is "Hello, Sunshine!" 
 

The relational operators are redefined to compare strings.  For example: 
 
apstring name1, name2; 
... 
if (name1 == name2) 
    ... 
 
if (name1 != name2) 
    ... 
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The <, <=, >, and >= operators compare strings using the ASCII order of 
characters.  In particular, all uppercase letters are “smaller” than all lowercase 
letters. 

a a a 

The apstring class is implemented in such a way that you can still access 
individual characters in a  string using subscripts, the same way you do with built-
in character arrays.  As with the apvector and apmatrix classes, the apstring 
class verifies at run time that the subscripts used in the program are within the 
legal range.  The subscripted string element can be used both on the left and on the 
right side of the assignment operator.  For example: 
 
apstring str = "bat"; 
char ch; 
 
... 
if (str[0] == 'b') { 
    ch = str[0]; 
    str[0] = str[2]; 
    str[2] = ch; 
} 

 
The length member function returns the current length of the string (excluding 
the null terminator): 
 
apstring str = "bat"; 
int len = str.length(); 
cout << len;            // Output: 3 

 
The following function returns true if all the characters in a string are digits.  It 
uses the isdigit function defined in the standard header file ctype.h: 
 
#include <ctype.h>  // Defines isdigit(…) 
#include "apstring.h" 
 
bool AllDigits(const apstring &str) 
 
{ 
    int i, len = str.length(); 
 
    for (i = 0;   i < len;   i++) 
        if (!isdigit(str[i])) 
            return false; 
 
    return true; 
} 
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Note that the apstring argument is passed to the function by reference.  As with 
apvector and apmatrix variables, this eliminates unnecessary copying of the 
string.  The keyword const indicates that the function does not change the string. 

a a a 

The apstring class also provides the find(…) function that helps you find a 
given character or a substring in the string, and the substr(…) function that 
builds a new string equal to a substring in the given string. 
 
The first form of find(…) is 
 
int find(char ch); 

 
It returns the position of the first occurrence of the character ch in the string.  If the 
ch character is not found, the function returns a special constant value, npos 
(currently set to -1 in apstring.cpp).  For example: 
 
apstring fileName; 
int i = fileName.find('.');  // if fileName is "TEST.DAT" 
                             //   i is set to 4. 
if (i == npos)     // if '.' is not found, use the default extension 
    fileName += ".TXT"; 

  
The second form of find(…) takes an apstring as an argument and returns the 
position of its first occurrence as a substring.  For example: 
 
apstring msg = "Hello, Sunshine!"; 
apstring target = "Sun"; 
 
int i = msg.find(target); // i is set to 7. 

 
This form of find(…) returns the position of the first character in the matching 
substring or npos when the substring is not found. 
 
The apstring class “knows” how to convert a literal string in double quotes into 
an apstring object.  This makes it possible to pass a literal string to a function 
that expects an apstring argument, for instance to the find(…) function (as well 
as to your own functions).  So you can write: 
 
int i = msg.find("Sun"); 

 
Another member function, 
 
apstring substr(int pos, int len); 
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builds and returns the substring that starts at position pos and has the length len.  
For example: 
 
apstring fileName = "TEST.DAT", ext; 
ext = fileName.substr(5, 3); // ext gets the value "DAT". 

a a a 

The c_str() member function returns the pointer to the actual null-terminated 
string associated with the apstring object.  This function is needed to convert an 
apstring object into a const char* for use with classes and functions that do 
not understand apstrings.  For example: 
 
apstring fileName; 
... 
ifstream file(fileName.c_str()); 
   // The ifstream class does not understand 
   //   the argument of the apstring type, so you can't write simply 
   //   ifstream file(fileName); 
   // The ifstream class expects a char* argument, and c_str() 
   //    performs the conversion. 

a a a 

In the apstring class, the << operator displays the string, and the >> operator 
reads one word.  For example: 
 
#include <iostream.h> 
#include "apstring.h" 
... 
    apstring prompt = "Please enter the file name: ", fileName; 
    cout << prompt; 
    cin >> fileName; 
    ... 

 
These operators are implemented with the help of similar operators for null-
terminated strings. 
 
The apstring class also provides a version of the getline function, which reads 
a whole line of text from cin or from a file.  This is not a member function, but a 
“free-standing” function that takes two arguments, the name of the input stream 
and an apstring variable.  The function returns a reference to the same stream: 
 
istream &getline(istream &inputFile, apstring &str); 
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For example, to read one line of text from cin you can use: 
 
    apstring line; 
    getline(cin, line); 

 
Here is a version of the Limerick program from the previous section, rewritten 
with the apstring class: 
 
//  This program uses the apstring class to print a file 
 
#include <iostream.h> 
#include <fstream.h> 
#include "apstring.h" 
 
int main() 
 
{ 
    apstring fileName, line; 
 
    cout << "File name: "; 
    cin >> fileName;                // Read one word into fileName. 
 
    ifstream f1(fileName.c_str());  // Open file for reading. 
       // c_str() is the apstring class's member function that returns 
       //   the pointer to the actual null–terminated string 
       //   associated with the apstring object. 
 
    if (!f1) { 
        cout << "Cannot open " << fileName << ".\n"; 
        return 1; 
    } 
 
    // Read lines while available (until the end of file). 
    while (getline(f1, line)) 
        cout << line << endl; 
 
    cout << "*** END OF FILE ***\n"; 
    return 0; 
} 

 
This version handles the lengths of text lines automatically.  It will print: 
 

File name: limerick.txt                                              � 
There once lived a poet named Sage 
Whose lines never fit on a page 
*** END OF FILE *** 
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12.6 Lab: Palindromes 
 
Write and test a Boolean function 
 
bool Palindrome(const apstring &text); 

 
This function will take a string text as an argument and return true if text is a 
palindrome (the same when read forward or backwards, as in “Madam, I'm 
Adam”).  In testing for a palindrome, ignore all spaces, punctuation marks, 
apostrophes, and other non-alphanumeric characters, and consider lower- and 
uppercase letters the same.  Don't let your function change the original string. 
 
As a first step, you can implement and test Palindrome(…) for only one word 
made of only lowercase letters; then you can add code to skip non-alphanumeric 
characters and to compare characters case-blind. 
 
The ctype.h header file declares useful functions and macros for determining the 
type of the character (isalpha(c), isdigit(c), and so on) and for converting 
characters to the upper or lower case.  In particular, you might want to use 
isalnum(char c), which returns true if c is a letter or a digit, and 
toupper(char c), which returns the corresponding upper case for 'a' - 'z' and the 
unchanged character for all other characters. 
 
Use the getline(…)function, described in the previous section, to get a test 
phrase from the user. 
 

12.7 Lab: GREP 
 
“GREP” is an old utility program from UNIX that scans a file or several files for a 
given word and prints out all lines in which that word occurs.  (According to The 
New Hacker's Dictionary, the name “GREP” comes from the “qed/ed” editor 
commands g/re/p — globally search for the regular expression and print the lines.) 
 
Write a simplified version of GREP that looks for a word in one file.  A “word” is 
defined as a contiguous string of alphanumeric characters.  For every line that 
contains the word, print out the line number and the line, like this: 
 
Line   29: You are my sunshine 

 
In a command-line-oriented operating system such as MS DOS or UNIX, 
programs often receive some initial data from the command line.  The parameters 
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passed to the program from the command line are called command line 
arguments.  A utility like GREP would normally be invoked with command line 
arguments.  GREP takes two: the word and the file name.  For example: 
 
C> grep sunshine song.txt 

 
C/C++ supports a form of the function main(…) that accepts command line 
arguments.  This form of main(…) is:  
 
int main(int argc, char *argv[]) 

 
argc and argv are traditional names for the arguments.  argc indicates how 
many words there are on the command line (including the program name).  argv is 
an array of pointers to the command line words: argv[0] points to the program 
name, argv[1] points to the first argument, etc.  argv[i] should be treated as 
literal constant strings.   If you need to change one of the command line words, 
you must copy it first into a temporary character array or into an apstring 
variable.  Otherwise, argv[i] can be used simply as a pointer to a constant 
character string. 
 
Integrated Development Environments usually provide an option for setting 
command line arguments.  For example, in Turbo C++ 4.5, you can enter the 
command line arguments in the Options/Environment/Debugger dialog box.  Your 
program may check whether the arguments are supplied and display a help 
message if they are missing or prompt the user for the required input. 
 
The search for a matching word can be accomplished by using the apstring's 
member function find(…).  This function will find the target word even if it 
occurs as part of another word in the line.  If you want to find only matches 
between complete words, write your own function. 
 
The following code provides a few initial steps for setting up the GREP program 
and an example of how a program gets hold of its command line arguments: 
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   GREP.CPP             � 
// GREP.CPP 
// 
// This program reads a file and prints out all lines 
//   where a given word occurs. 
// 
//  Usage: 
//     C> grep word fileName  
// 
//  Author: Yu Nix 
//  Date: 01/12/70 
 
#include <fstream.h> 
#include <iomanip.h> 
#include <ctype.h> 
#include "apstring.h" 
 
int main(int argc, char *argv[]) 
 
{ 
    apstring word, fileName; 
    apstring line; 
    int lineNum = 0; 
 
    // Get the arguments from the command line: 
 
    if (argc >= 3) {        // At least 3 words 
                            //   on the command line. 
        word = argv[1];      // argv[1] is the word to search for. 
        fileName = argv[2];  // argv[2] points to the file name 
    } 
    else { 
        cout << "Enter the word to search for: "; 
        cin >> word; 
        cout << "Enter the file name: "; 
        cin >> fileName;  
    } 
 
    // Create input stream for the file: 
 
    ifstream file(fileName.c_str());     // Open file for reading 
    ... 
} 
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 For “extra credit”: 
 
Supply and use your own function 
 
  FindCaseBlind(const apstring &line, const apstring &word); 

 
that matches only complete words and performs case-blind comparison of letters. 
 

12.8 Formatted Output to a Character Array 
 
The standard library does not offer direct functions for converting numbers into 
character strings, but there is a powerful general-purpose mechanism that allows 
programmers to write formatted “output” — text and numbers — into a string.  
You can associate a character array with an output stream.  All the “output” to that 
stream, produced by the insertion operator <<, I/O manipulators, and all other 
stream I/O functions, will be directed into your character array (rather than to the 
screen or to a file).  This feature works with null-terminated strings.  Without 
going too deeply into the details of the syntax, let us see how it is done: 
 
#include <iostream.h> 
#include <strstream.h> // Defines stream I/O classes for character arrays 
#include <iomanip.h>   // Only if manipulators setw(...), 
                       //   setprecision(...), etc. are used. 
 
... 
const int SIZE = 100; // Maximum length of the 
                      //   output string, e.g. 100. 
   ... 
    char buffer[SIZE];          // Declares the character array. 
 
    ostrstream os(buffer, SIZE); 
                                // Declares a string–type output 
                                //   stream, "os", and associates 
                                //   it with "buffer". 
 
    // All output to os now goes into buffer. 
    // For example ... 
 
    double pi = 3.14159; 
    os << "PI ="; 
    os << setw(5) << setprecision(2) << pi << ends; 
 

Continued    ® 
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    //  ... places "PI = 3.14" into buffer (ends is a manipulator 
    //    that appends the null character, instead of endl). 
 
    ... 
    // If the previous string in buffer is no longer necessary, 
    //   and you want to reuse buffer: 
 
    os.seekp(0);              // "Rewind" os 
                              //   (Re–positions internal stream 
                              //    pointer to the beginning 
                              //    of buffer). 
    os << ...                 // Now the output will go to buffer, 
                              //   starting at the beginning again. 

 
A similar method can be used for “input” from a string, but instead of 
ostrstream, we use istrstream: 
 
    ... 
    istrstream is(buffer);   // Creates an input stream "is" and 
                             //   associates it with "buffer", where 
                             //   "buffer" is a null–terminated string. 
    is >> ... 
 
    is.seekg(0);             // Re–positions internal stream 
                             //   pointer to the beginning of buffer. 

 
For example, the task of extracting hours, minutes and seconds from a time string 
“hh:mm:ss” can be accomplished as follows: 
 
#include <strstream.h> 
    ... 
    int hour, mins, secs; 
    char time[9] = "02:13:54"; 
 
    istrstream timestr(time); 
 
    timestr >> hour; 
    timestr.ignore(1, ':');           // Skip ':' 
    timestr >> mins; 
    timestr.ignore(1, ':'); 
    timestr >> secs; 
    ... 
    strcpy(time, "12:02:01");   // Copy new data into "time" array 
    timestr.seekg(ios::beg);    // "Rewind" the timestr stream 
    timestr >> hour; 
    ... 

 
Note the use of two different functions for repositioning streams: seekp(…) for 
output streams and seekg(…) for input streams.   “p” probably stands for “put”, 
“g” for “get”. 
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12.9 Summary 
 
C++ programmers can use literal constant strings, which consist of some text 
placed between double quotes.  Literal strings may include escape characters 
('\n', '\t', '\\', etc.)  The C++ compiler automatically appends a null 
character to a literal character string.  Literal strings can be used to initialize 
character arrays and apstring class variables. 
 
The stream I/O insertion and extraction operators << and >>  treat char* pointers 
differently from other pointers.  Their implementation assumes that the pointer 
points to a character array.  The << operator expects a null-terminated string and 
prints the string.  The >> operator skips all white space, reads one word into the 
array, and appends a terminating null.  To read a whole string, programmers use 
the getline(…) function: 
 
myFile.getline(char str[], int maxcount, char delim = '\n'); 

 
The apstring class offers a more convenient and safer way for handling strings.  
It verifies that all subscripts fall within the legal range.  The apstring class 
redefines the = operator for copying strings, the + and += operators for 
concatenating strings, and the relational operators for comparing strings 
alphabetically.  It also provides member functions that find a character or a 
substring in a string, and extract a substring from a string. 
 
The apstring class uses the << and >> operators for displaying the string and 
reading one word.  The getline(…) function, provided with the apstring class 
(not to be confused with cin.getline(…) or myFile.getline(…)), can be 
used to read a whole line of text from cin or from a file.  For example: 
 
... 
    apstring str; 
    getline(myFile, str); 
    ... 
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13.1 User-Defined Types 
 
Up until now we have taken an oversimplified view of software design.  We 
focused only on its procedural side — describing a programming task through a 
hierarchy of subtasks and implementing them as functions — and completely 
ignored the other, equally important second side: structuring the data involved in 
the task.  We can design and implement many computer applications more 
efficiently if we take as a starting point not the procedures but the data: not what 
we have to do, but what kind of data we have to deal with, and how to represent it.  
For example, when we design a computerized inventory control system, we may 
begin by asking questions such as: What is an inventory item?  Which data 
elements and data types are needed to describe it?   How should we organize the 
inventory data?  What other data elements (e.g., purchase orders, dates, backorder 
items, etc.) have to be represented, and how? And so on. 
 
C++ offers a simple and convenient mechanism for imposing structure on the data 
involved in a programming task.  A programmer may combine elements that have 
different data types (including built-in types, user-defined types, arrays, pointers, 
and so on) into one structure, defining this as a new user-defined data type.  This 
is accomplished by using the keyword struct and listing the elements of the 
structure inside braces, separated by semicolons.  The elements of the structure are 
called structure members; the programmer gives each member a name that lets the 
program access it. 
 
The following structure, for example, can represent an inventory item in an 
inventory control system: 
 
struct INVENTORYITEM { 
    int partNum; 
    apstring description; 
    int quantity; 
    double price; 
}; 

 
The power of structures lies in the fact that once defined, the structure 
name becomes a new data type in the program; it can be used pretty 
much the same way as the built-in data types. 
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In particular, we can declare variables, arrays, pointers, and references of that type.   
In the above example, for instance, INVENTORYITEM becomes a new data type.  
This lets us write declarations such as: 
 
    INVENTORYITEM newItem; 
    INVENTORYITEM *ptrItem; 
    INVENTORYITEM inventory[10000]; 
    apvector<INVENTORYITEM> inventory(10000); 

 
We can also use the new operator to dynamically allocate one element or an array 
of the new data type.  For example: 
 
    INVENTORYITEM *ptrItem = new INVENTORYITEM; 
    INVENTORYITEM *inventory = new INVENTORYITEM[5000]; 

 
The general form of a structure definition is:  
 
struct newtypename { 
    sometype1 name1; 
    sometype2 name2; 
    ... 
    sometypek namek; 
}; 

 
Note that a structure definition (as opposed to a function definition) 
requires a semicolon after the closing brace. 

 
We prefer to use all caps for the new data types' names — this is just a question of 
taste. 
 
Once a data type is defined, the programmer can use it in definitions of 
new types. 

 
Suppose, for instance, that we have defined the DATE structure:  
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 

 
Now if we want to add the date of the last shipment to INVENTORYITEM,  we can 
simply add one member: 
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struct INVENTORYITEM { 
    int partNum; 
    apstring description; 
    int quantity; 
    double price; 
    DATE lastShipped;        // Date of the last shipment. 
}; 

 
The members of a structure occupy a contiguous block of memory and its 
total size is the sum of the sizes of all members.  The programmer can 
determine the total size of a structure by using the sizeof operator. 

 
User-defined types' definitions may be placed into a separate header file.  This is 
convenient if a programmer re-uses the same data types in different projects.  The 
file is included into the program using the #include directive, as usual, but the 
name of the header file is placed in double quotes rather than angular brackets to 
indicate that the compiler should look for it in the current project directory rather 
than the compiler include directory.  The syntax looks as follows:   
 
// MYFILE.H 
 
struct DATE { 
   ... 
}; 
... 

 
// MYPROG.CPP 
 
#include "myfile.h" 
 
... 
 

 

13.2 Initialization and Assignments 
 
A symbolic constant or a variable of a user-defined struct type may be 
initialized in its declaration by listing the values of its elements inside braces, 
separated by commas.  For example: 
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struct DATE { 
    int month; 
    int day; 
    int year; 
}; 
 
    ... 
 
const DATE firstDay = {01, 01, 1900}; 
const DATE lastDay = {12, 31, 2000}; 
DATE currentDay = {6, 1, 1998}; 

 
Unfortunately, this simple method does not apply when the structure has 
apvector, apmatrix, or apstring members.  We will learn how to initialize 
such structures later, using constructors with initializer lists. 
 
C++ aims to make user-defined types work the same way as built-in 
types.  In particular, it allows us to initialize a variable to some previously 
initialized variable or constant and to use the assignment operator with 
the usual syntax. 

 
For example: 
 
    ID_INFO someGuy = johnQPublic; 
    ID_INFO otherGuy; 
    ... 
    otherGuy = someGuy; 
 

 
The = operator in the initialization and assignment means 
member-by-member assignment: each member of the structure on the 
right side is copied into the corresponding member of the structure on the 
left side. 

  
However, a programmer must keep in mind that an innocuous assignment 
statement may conceal a lot of byte-copying if the structures are large. 
 
Also be careful if a structure contains pointers.  Since the assignment is done 
member by member, the corresponding pointer on the left side of the assignment 
will become simply a replica of the pointer on the right side, and it will point to the 
same location.  As we will see later, this can cause problems. 
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13.3 Accessing Structure Members 
 
The members of a structure can be accessed in two ways: either through 
the variable itself, or through a pointer to the variable.  To access a 
member through the variable, we append its name to the variable's name, 
separating the two by a dot ("."). 
 
For example: 
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 
 
    ... 
    DATE lastShipped, today; 
    ... 
    today.year = 1998; 
    ... 
    lastShipped.month = today.month; 
    ... 

  
The following program prints a date: 
 
#include <iostream.h> 
#include <iomanip.h> 
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 
 
int main() 
 
{ 
    DATE date; 
 
    date.month = 1; 
    date.day = 1; 
    date.year = 2001; 

Continued    ® 
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    cout.setf(ios::right, ios::adjustfield); 
    cout << setfill('0')                 // Show leading zeroes 
         << setw(2) << date.month << '–' 
         << setw(2) << date.day   << '–' 
         << setw(4) << date.year 
         << setfill(' ')                 // Reset the leading char 
         << endl;                        //   back to space. 
 
    return 0; 
}  

 
The output will be: 
 

01–01–2001                                                           � 

a a a 

To access a member through a pointer, we append its name to the 
pointer's name, separating the two by an arrow "–>" 
(two characters: – followed by >). 

 
For example: 
 
    DATE *p; 
    ... 
    p = &today;          // or, say: p = new DATE; 
    p–>year = 2001; 
    ... 
    int day = p–>day; 

a a a 

You can also access structure members through a reference using “dot” notation.  
For example: 
 
    DATE today, &r = today; 
    ... 
    r.year = 2001;   // Actually sets today.year to 2001. 

a a a 

There are more complex situations when a structure member is an array or another 
structure, or when we have an array of structures.  The syntax for handling these 
situations is rather logical.  As an example, let us consider the following 
definitions and declarations: 
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struct VERTEX { 
    int x; 
    int y; 
}; 
 
struct POLYGON { 
    int nSides; 
    apvector<VERTEX> vertices; 
}; 
    ... 
    POLYGON polygon; 
    POLYGON *p = &polygon; 
    apvector<POLYGON> drawing; // A "drawing" is made of many polygons. 

 
The following examples show how we can refer to various elements of structures 
of arrays and arrays of structures: 
 
    int n = polygon.nSides;            // Number of sides in polygon. 
 
    VERTEX v = polygon.vertices[i];    // The i–th vertex in polygon. 
 
    VERTEX *pv = &polygon.vertices[i]; // Pointer to the i–th vertex 
                                       //   in  polygon. 
 
    int x = polygon.vertices[i].x;     // x–coordinate of the i–th 
                                       //   vertex in polygon. 
 
    int n = p–>nSides;                 // Number of sides in polygon, 
                                       //   pointed to by p. 
 
    int x = p–>vertices[i].x;          // x–coordinate of the i–th vertex 
                                       //   in polygon, pointed to by p. 
 
    int n = drawing[n].nSides;         // Number of sides in the n–th 
                                       //   polygon in drawing. 
 
    int x = drawing[n].vertices[i].x;  // x–coordinate of the i–th 
                                       //   vertex in the n–th polygon 
                                       //   in drawing. 

 
The order of operations is less obvious when a member of a structure is a pointer to 
another structure or a pointer to an array.  For example: 
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struct COUNTRY { 
    POLYGON *border;           // A pointer to a polygon "border" 
    apvector<POLYGON> states;  // An array of polygons 
                               //   (states). 
}; 
    ... 
    COUNTRY usa; 
    ... 
    usa.border = new POLYGON; 
    usa.states.resize(50); 
    ... 

   
    int n = usa.border–>nSides;        // Number of sides in the polygon 
                                       //   pointed to by border in usa. 
 
    int y = usa.border–>vertices[i].y; // y coordinate of the i–th vertex 
                                       //   in the polygon pointed to 
                                       //   by border. 
 
    VERTEX v = 
           usa.states[n].vertices[i];  // The i–th vertex of the 
                                       //   n–th state in the array 
                                       //   pointed to by states. 

 
 

...This is the cow with the crumpled horn, 
That tossed the dog, 
That worried the cat, 
That killed the rat, 
That ate the malt 
That lay in the house that Jack built... 

 
When these expressions become too long, a programmer can split them into 
manageable pieces.  For instance: 
 
    POLYGON *state = &usa.states[n]; // A pointer to the n–th state 
    int sides = state–>nSides; 
    int x = state–>vertices[i].x; 
    int y = state–>vertices[i].y; 

 
as opposed to: 
 
    int sides = usa.states[n].nSides; 
    int x = usa.states[n].vertices[i].x; 
    int y = usa.states[n].vertices[i].y; 

 
If your nested data structures become too complex, though, you should probably 
re-examine your design. 
 



232 PART 1 ~ PROGRAMS: SYNTAX AND STYLE 

13.4 Passing and Returning Structures to and 
from Functions 

 
Passing a structure to a function by value involves copying the whole structure to 
the system stack.  It is usually more efficient to pass the structure by reference, 
because then only its address is put on the stack.  If we do not want to modify the 
structure inside the function, it is safer to add the keyword const to the function 
argument.  The following function prints the DATE structure, which is passed to it 
by reference: 
 
void PrintDate(const DATE &date) 
 
// Prints the date as mm–dd–yyyy 
 
{ 
    cout << setfill('0')                 // Show leading zeroes 
         << setw(2) << date.month << '–' 
         << setw(2) << date.day   << '–' 
         << setw(4) << date.year 
         << setfill(' ');                // Reset the leading char 
                                         //   back to space. 
}  

 
If the structure will be modified inside the function, you need to pass it by 
reference (you could also pass it by pointer, but we prefer the former method).  
The following function, for example, scales the coordinates of a point: 
 
struct POINT { 
    int x; 
    int y; 
}; 
 
... 
const double SCALE_FACTOR = .1; 
... 
 
void ScalePoint (POINT &point) 
 
//  Scales the point coordinates by SCALE_FACTOR. 
 
{ 
    point.x *= SCALE_FACTOR; 
    point.y *= SCALE_FACTOR; 
} 

a a a 
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A less intuitive notion is that a function can return a structure.  The function must 
be declared to have the type of the structure, and the return statement must return 
a value of the type of the structure.  The example below shows how the 
ScaledPoint(…) function is defined and used.  It takes a POINT type argument 
(passed by reference for efficiency) and returns the scaled point: 
 
... 
 
POINT ScaledPoint (const POINT &point) 
 
//  Returns a point with coordinates scaled by SCALE_FACTOR. 
 
{ 
    POINT scaled; 
 
    scaled.x = point.x * SCALE_FACTOR; 
    scaled.y = point.y * SCALE_FACTOR; 
    return scaled; 
} 
 
int main() 
 
{ 
    POINT point1, point2; 
 
    point1.x = 100; 
    point1.y = 200; 
    point2 = ScaledPoint(point1); 
    ... 
} 

 
It seems desirable to deal with user-defined data types the same way that we deal 
with built-in types.  Hence the idea of returning structures from functions.  For 
small structures that are calculated inside functions, this leads to elegant code.  But 
it is not very practical for large structures, especially if we want to change just a 
couple of values in the structure.  Consider how much waste is involved in the 
following code: 
 
struct BIGSTRUCT { 
    int count; 
    apvector<double> x;  // May hold many elements 
}; 
 
BIGSTRUCT Reset(BIGSTRUCT b) 
 
{ 
    BIGSTRUCT temp = b;    // Copies structure b to temp. 
    temp.count = 0; 
    return temp;           // Copies temp to the result. 
} 
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int main() 
 
{ 
    BIGSTRUCT b1; 
 
    b1 = Reset(b1);        // Copies b1 to the argument, and then 
                           //   the result back into b1. 
    ... 
} 

 
The same result can be accomplished without any copying: 
 
... 
void Reset(BIGSTRUCT &b) 
 
{ 
    b.count = 0; 
} 
 
int main() 
 
{ 
    BIGSTRUCT b1; 
 
    Reset(b1); 
    ... 
} 

a a a 

The above example should not be confused with functions that return a pointer to a 
structure.  When a pointer is returned, no copying is necessary.  For example: 
 
BIGSTRUCT *NewBigStruct() 
 
// Allocates a new BIGSTRUCT and sets b.count to 0. 
// Returns a pointer to the new structure. 
 
{ 
    BIGSTRUCT *p = new BIGSTRUCT;   // Allocate BIGSTRUCT 
    if (!p) { 
        cout << "*** Memory allocation error in NewBigStruct ***\n"; 
        return 0;         // Return null pointer. 
    } 
    p–>count = 0; 
    return p;                       // Return a pointer to newly 
                                    //   allocated BIGSTRUCT. 
} 
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13.5 Input/Output for User-Defined Types 
 
The ideal of treating user-defined data types exactly the same way as built-in types 
finds an obstacle in stream I/O insertion and extraction operators.  These operators 
have been programmed to handle all built-in types properly, but how can they 
know about user-defined types?  It turns out that there is a solution to this problem 
based on the C++ feature known as function and operator overloading. 
 
“Overloading” means using the same name for two or more different 
functions or the same symbol for two or more different operators.  The 
difference between these functions (or operators) is in the number or data 
types of their arguments. 

 
Let us take the stream insertion operator << as an example.  This operator actually 
takes two operands: the output stream and the output value.  There are many 
different forms of the insertion operator for handling output values of different 
data types: char, int, etc. From the compiler's perspective, different forms of the 
<< operator are different operators even though they use the same symbol.  The 
compiler automatically invokes the appropriate form of the operator based on the 
data type of the operand.  There is nothing unusual in this.  We don't pay any 
attention, for instance, to the fact that we can use the same + operator to add both 
integers and floating point numbers. 
 
In C++ we can also use the same name for two functions that take arguments of 
different data types.  For the compiler, these are two entirely different functions.  
For instance, 
 
void PrintOut(int x); 

 
and   
 
void PrintOut(double x); 

 
can be defined in the same program without any conflict.  The compiler selects 
which one to call based on the type of the argument: for an int value it calls 
PrintOut(int), and for a double value it calls PrintOut(double).  This is 
called function overloading. 

a a a 
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In C++ the difference between operators and functions is minimal: an 
operator is a function, except that it is invoked in the program using 
different syntax.  The operator represented by a X symbol is defined as a 
function with the name “operatorX”.  

 
  For instance, if we want to, we can write: 
  
    cout.operator<< (x);   // Call member function operator<< with 
                           //   the argument x. 

 
rather than the usual: 
 
    cout << x; 

 
Our goal is to define a new overloaded form of the << operator that handles the 
DATE data type.  We would like to write: 
 
    DATE date = {12, 31, 2000}; 
 
    cout << date; 

 
and receive the output: 
 

12–31–2000                                                           � 

 
To overload the << operator we need to define a new function operator<<(…).  
In our case, this function will take two arguments: a reference to the output stream 
and a reference to a DATE structure.  To follow the convention, the function has to 
return a reference to the same stream.  The data type ostream is defined in 
iostream.h. 
 
Emulate the following example to overload the << operator for a 
user-defined data type. 
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  OVERLOAD.CPP   � 
#include <iostream.h> 
#include <iomanip.h> 
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 
 
ostream &operator<< (ostream &os, const DATE &date) 
 
// Usage: 
//   os << date; 
// Prints the date as mm–dd–yyyy. 
// (Requires <iostream.h> and <iomanip.h>.) 
 
{ 
    os.setf(ios::right, ios:: adjustfield); 
    os << setfill('0')                 // Show leading zeroes 
       << setw(2) << date.month << '–' 
       << setw(2) << date.day   << '–' 
       << setw(4) << date.year 
       << setfill(' ');                // Reset the leading char 
                                       //   back to space. 
    return os; 
} 

 
The above code is almost identical to the PrintDate(…) function from the 
previous section.  But to overload the << operator we have to name the new 
function operator<<. 
 

13.6 Lab: Updating Your Inventory 
 
Review the One of Each Inventory System from Section 8.4.  In that program, 
inventory items were defined simply as integers.  Enhance the program by defining 
a new data type that would represent an inventory item as a structure including part 
number, part description, and quantity. 
 
Declare the inventory array not as apvector<int>, but as an apvector of the 
newly defined data type.  Modify the processing of the menu commands 
accordingly.  Prompt the user, where necessary, for part description and quantity. 
 
Modify the Find(…), Show(…), Add(…), Remove(…), and List(…) functions 
appropriately.  You will also need to change  the function arguments: 
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1. The Add(…) function should now take three arguments: the part number, 
description, and quantity.  Alternatively, it can take one argument — the 
inventory item structure (const, passed by reference).  The part description 
should be verified and the specified quantity should be added to the available 
quantity if the item is already in the array. 

 
2. The Remove(…) function should take an additional argument quantity.  The 

specified quantity should be subtracted from the available quantity. If the 
requested quantity exceeds available inventory, display a message to backorder 
the difference. 

 
 For “extra credit”: 
 
3. Implement and use an overloaded << operator to display structures of the 

inventory item data type. 
 

13.7 Programming Project: Enhancements to the 
Dictionary Program 

 
Remember the Dictionary program in Chapter 2?  Read it again and make the 
following modifications: 
 
1. Accept the dictionary file name from the command line.  If not specified, use 

the default file name DICT.DAT. 
 
2. Add the part of speech indicator (e.g. adjective, noun, verb, etc.) to the 

dictionary data file lines and add a member to hold the part of speech indicator 
in the ENTRY structure.  Have the program display the part of speech indicator 
together with the translation. 

 
3. Manually arrange the entries in the dictionary file in alphabetical order.  

Modify the FoundWord(…) function to use binary search on the dictionary 
array. 

 
4. If a word is not found in the dictionary, ask the user whether he wants to add 

the word.  Implement a function that inserts a word into the dictionary in the 
correct alphabetical place. 

 
Develop a comprehensive QA (quality assurance) plan and test the program. 
 
 For “extra credit”: 
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5. Define and use overloaded stream insertion and extraction operators for the 

ENTRY structure. 
 
6. Allow multiple entries for the same word in the dictionary data file and show 

all translations for the word. 
 
7. Allow the user to enter sentences and make the program “translate” the 

sentence (i.e., all the words in the sentence). 
 
8. If words have been added to the dictionary, ask the user whether he wants to 

save the modified dictionary.  Implement a function to save the dictionary in a 
file (in the same format). 
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14.1 Discussion 
 
If you don't know much about cars and you take a look under the hood of an 
automobile, you will see a number of interconnected modules and parts designed 
to fit neatly into a restricted space.  You may also observe that all the car’s wheels 
are the same and that different car models may have identical or interchangeable 
parts. 
 
Computer programs are a different kind of artifact, one whose structure is not 
readily available for inspection by the user.  If he could peek “under the hood” of 
software systems, the user might find all sorts of things ranging from elegant 
designs to monstrous tangles. 
 
One obvious way to reduce chaos and introduce some order into any complex 
project is to divide it into reasonably independent pieces.  A large, well-structured 
software system typically comprises a number of modules that can be created and 
tested independently of each other.  Each module implements a set of related data 
structures and functions.  Modern programming languages and software 
development environments, including C++, provide support for this modular 
approach. 
 
Software modules can be compiled separately and then linked into one 
executable program. 

 
The benefits of modular software design, besides cleaner structure and more 
efficient implementation, include easier software maintenance and reusability.  In a 
bird’s-eye view of the project, each module exists to carry out a certain task.  Once 
the interfaces between the modules are defined, each module can be implemented 
and even modified independently of the other modules.  This property is called 
locality.  A tested module can be used in other projects that present the same task.  
This property is called reusability.  Since software’s main costs are development 
and maintenance, not physical production, tested reusable code is essentially free. 
 
Modularity is, of course, widely used in the physical world.  Once the connections 
and the size of a dishwasher are standardized, a kitchen designer can proceed with 
the overall design with an “abstract” dishwasher in mind.  The specific model will 
be installed later and can be replaced easily in case of a malfunction or upgrade. 
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In this chapter we discuss the more traditional approach to modularity in which 
each module implements a set of related functions.  This will prepare us for later 
chapters where we will consider a more advanced concept of modularity associated  
with C++ classes. 
 

14.2 Example: Dates Revisited 
 
As an example, let us consider a software application that processes banking 
transactions.  In all likelihood this application will have to deal with dates. Even 
before knowing all the details, we can predict that this application will need 
functions that validate and compare dates and convert them into different formats. 
These functions can fit neatly into a separate module, which would deal only with 
a structure defined for representing dates. 
 
Let us start by defining the DATE structure: 
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 

 
We can then think of functions useful for the tasks at hand.  For example: 
 
... 
bool ValidDate(const DATE &date); 
int DaysBetween(const DATE &date1, const DATE &date2); 
bool Earlier(const DATE &date1, const DATE &date2); 
void AddDays(const DATE &date1, DATE &date2, int days); 
ostream &operator<< (ostream &os, const DATE &date); 
... 

 
Other functions may be added later, as the application takes shape.  Some 
reasonable functions may be included for completeness even if they are not 
immediately useful for this application, because the extra effort is minimal and 
they may be useful for testing or for a future application.  The same or another 
member of the development team can implement the actual code. 
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14.3 Program Modules and Header Files 
 
In C++ the source code for each module is implemented in a separate file.  The file 
that handles dates, for example, may be called DATES.CPP.  How would other 
modules “know” about the definitions and functions in DATES.CPP?  One approach 
would be to include the file’s text into the main program by putting 
 
#include "dates.cpp" 

 
somewhere in the main program.  This would be equivalent to copying the source 
code from DATES.CPP into the main program — the modules would be combined at 
the source code level.  Any change to DATES.CPP would require recompilation of 
all modules that use the date functions, and the object code for them would be 
repeated in every module that uses them.  This approach would make it difficult to 
maintain the integrity of large software systems and would waste both space and 
compilation time. 
 
A better approach, which is supported in C++ and other modular languages, is to 
compile the modules separately and then combine them into one executable 
program.  The modules don't need to know the details of each other's 
implementation, but they do need to share some definitions and declarations.  In 
C++ this is accomplished by means of header files.  We have already used standard 
library modules and system header files provided with the compiler.  There is 
nothing that would prevent a programmer from creating his own header files. 
 
Programmers create their own header files to let modules share 
definitions and declarations. 

 
C++ recognizes two forms of the #include directive.  One form uses angular 
brackets and is used with system header files provided with the compiler.  For 
example: 
 
#include <iostream.h> 

 
The other form uses double quotes instead of angular brackets.  This form is 
reserved for header files that you have written or that your organization has 
supplied.  For example: 
 
#include "apstring.h" 
#include "dates.h" 



 CHAPTER 14 ~ MODULARITY 247 
 

 
The difference between the two forms is in the order in which the file directories 
are searched for header files.  The double quote form indicates that the search 
should start with the current user directory, that is, the same directory where all the 
programmer's source code is located; the angular bracket form indicates that the 
search should start with the compiler system directories and not look into the 
current directory at all. 
 
In our example, we can put the definition of the DATE structure and the function 
prototypes for the date functions into a separate header file.  Following the 
convention, we name this file DATES.H — the same name as the respective source 
module but with the extension .h. 
 

  DATES.H               � 
// DATES.H 
// 
// Header file for the DATES module 
// 
//   Author: Cal Lenders   
//   Rev 1.0 
// 
 
#include <iostream.h> 
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 
 
// Function Prototypes: 
 
bool ValidDate(const DATE &date); 
int DaysBetween(const DATE &date1, const DATE &date2); 
bool Earlier(const DATE &date1, const DATE &date2); 
void AddDays(const DATE &date1, DATE &date2, int days); 
ostream &operator<< (ostream &os, const DATE &date); 
 

 
The code in DATES.CPP may look as follows: 
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  DATES.CPP           � 
// DATES.CPP 
// 
// DATES module 
// 
//   Author: Cal Lenders   
//   Rev 1.0 
// 
 
#include "dates.h" 
 
const int daysInMonth[12] = 
   { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; 
 
// Days from the beginning of the year 
//   to the beginning of the month: 
 
const int daysToMonth[12] = 
   { 0,  31,  59,  90, 120, 151, 181, 212, 243, 273, 304, 334 }; 
 
const char *monthName[12] = { 
    "January", "February", "March", 
    ... 
}; 
 
//**************************************************************** 
 
bool LeapYear (int year) 
 
// year must be between 1900 and 2999. 
// Returns true if "year" is a leap year. 
 
{ 
    ... 
} 
 
//**************************************************************** 
 
bool ValidDate(const DATE &date) 
 
// Returns true if date contains a valid date between 
// Jan 1, 1990 and Dec 31, 2100. 
 
{ 
    ... 
} 
 
//**************************************************************** 

Continued    ® 
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static int DaysSince1900(const DATE &date) 
 
// date contains a valid date 
//   (between Jan 1, 1990 and Dec 31, 2100). 
// Returns number of days passed since Jan 1, 1990. 
 
{ 
    ... 
} 
 
//**************************************************************** 
 
int DaysBetween(const DATE &date1, const DATE &date2) 
 
// date1 and date2 must contain valid dates. 
// Returns number of days passed from date1 to date2. 
 
{ 
    return DaysSince1900(date2) – DaysSince1900(date1); 
} 
 
//**************************************************************** 
 
bool Earlier(const DATE &date1, const DATE &date2) 
 
// date1 and date2 must contain valid dates. 
// Returns true if date1 is earlier than date2, false otherwise. 
 
{ 
    return DaysBetween(date1, date2) > 0; 
} 
 
//**************************************************************** 
 
void AddDays(const DATE &date1, DATE &date2, int days) 
 
// date1 contains a valid date and days is >= 0. 
// Fills date2 with a new date obtained by 
//   adding days to date1. 
 
{ 
    ... 
} 
 
//**************************************************************** 

Continued    ® 
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ostream &operator<< (ostream &os, const DATE &date) 
 
// Usage: 
//   cout << date; 
// Prints the date, as in "January 1, 1990". 
 
{ 
    os << monthName[date.month – 1] << ' ' 
       << date.day << ", " 
       << date.year; 
 
    return os; 
}  

 
The header file is included into each module that needs to use the 
functions and structures defined in it, but the functions’ actual code is not 
duplicated.  Each module can be compiled separately. 

 
A separate test program may be created for testing all the date functions: 
 

  TESTDATE.CPP    � 
// TESTDATE.CPP 
// 
// This program is used to test the dates functions defined in 
//   DATES.CPP. 
 
#include <iostream.h> 
#include "dates.h" 
 
int main() 
 
{ 
    DATE date1, date2; 
    int days; 
 
    cout << "Enter three numbers: month, day, year\n" 
         << "    (e.g. 7 4 1999) ==> "; 
    cin >> date1.month >> date1.day >> date1.year; 
    if (ValidDate(date1)) 
        cout << date1 << endl; 
    else { 
        cout << "*** Invalid date ***\n" 
             << " (Valid dates are between Jan 1, 1990 and\n" 
             << "       Dec 31, 2100).\n"; 
        return 1; 
    } 

Continued    ® 
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    cout << "Enter number of days to increment this date ==> "; 
    cin >> days; 
 
    AddDays(date1, date2, days); 
    cout << "The new date is " << date2 << endl; 
 
    if (DaysBetween(date1, date2) == days) 
        cout << "Test ok.\n"; 
    else 
        cout << "Error in AddDays or DaysBetween.\n"; 
 
    return 0; 
} 

 
A special program, the linker, is used to put the modules together.  We will discuss 
the linker in Section 14.5. 
 

14.4 Module Hierarchies 
 
Large projects may involve hierarchies of modules.  One approach to good 
software architecture is to arrange functions in layers based on their “level of 
functionality” and the “level” of data structures that they deal with.  For example, 
functions that deal with different types of transactions in a banking application 
may form a separate layer positioned above the layer that deals with dates.  Each 
layer can be implemented as a separate module or several modules. 
 
In an ideal architecture, each layer uses only functions and data structures from the 
layer immediately below it.  Changes in the implementation of a module normally 
do not disturb other modules.  In a “layered” design, even changes to the interface 
of a module do not propagate through the whole system but affect only the layer 
above it. 
 
This kind of  layered design creates a dilemma related to the use of header files.  A 
higher layer may have its own header file which requires definitions from lower 
layers.  For example, the module processing transactions, TRANS.CPP,  may use its 
own header file, TRANS.H.   Declarations and definitions in TRANS.H may require 
the DATE structure from DATES.H, so the programmer may decide to include 
DATES.H at the top of TRANS.H: 
 
// TRANS.H 
 
... 
#include "dates.h" 
... 
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It may be difficult, though, to keep track of which header files are included within 
other header files.  Suppose another header file (say, ACCOUNTS.H) also includes 
DATES.H.  Now suppose both TRANS.H and ACCOUNTS.H are included into the same 
module. Then DATES.H will be included twice and the compiler will generate error 
messages that structures and constants in DATES.H are already defined. 
 
To get around this problem, programmers often use conditional compilation 
preprocessor directives to eliminate duplicate inclusions of the same code.  At the 
beginning of the header file, a programmer defines a constant that identifies that 
file.  The constant's name should be unusual to avoid clashes with other names; for 
example, it may start and end with a few underscore characters.  The text of the 
header file is placed between the #ifndef–#endif preprocessor directives and is 
included only if the constant is not defined above; that is, only if that header file 
has not yet been included in this module.  For example: 
 
// DATES.H 
 
#ifndef _DATES_H_   // Include statements below only if the 
                    //   name _DATES_H_ is not defined. 
  
#define _DATES_H_     // Now the name _DATES_H_ becomes defined 
 
#include <iostream.h> 
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 
 
... 
... 
 
#endif    // End of conditional compilation for #ifndef _DATES_H_ 

 
The same trick is used in system header files.  Note that we have included 
iostream.h into DATES.H because we needed the definition of the ostream type.  
But although  we have included both iostream.h and DATES.H into 
TESTDATE.CPP, the conditional compilation in iostream.h prevents duplicate 
definitions. 
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14.5 Linking 
 
The process of combining different object modules into one executable module is 
called linking.  Linking, in a nutshell, involves the following steps.  When the 
compiler finds a function definition (not the prototype, but the actual code), it 
places the function's name and its address (relative to the beginning of the module) 
into a special table of global (a.k.a. public) symbols.  This function can be used 
from other modules.  When a compiler finds the first call to a function that is not 
defined in the given module, it places the function’s name in a special table of 
external symbols and reserves some logical external address for it, leaving that 
address temporarily undefined.  This indicates that the function's code should be 
found in some other module.  Each object module has a table of “globals” and a 
table of “externals.” 
 
(Actually, as we discussed in Section 13.5 of Part 1, C++ supports function 
overloading: functions with the same name but different sets or data types of 
arguments are considered by the compiler to be entirely different functions.  Thus, 
a complete function signature, including its name and the types of all its 
arguments, is stored in the tables of globals and externals.) 
 
A special program, the linker, examines the set of object modules that you 
have specified in the linking command.  It combines all the code 
contained in them and tries to resolve all external references by finding 
their names and addresses among the globals of other modules.  The 
logical addresses of externals are then replaced with their actual 
addresses in the combined code, and the linker creates an executable file. 

 
The linker is provided to you together with other development tools. 
 
In case of problems, the linker reports errors.  One common error is “Unresolved 
external: YourFunction.”  This happens when none of the specified modules 
contains YourFunction's code.  Another possible error is “Multiple definitions of 
YourFunction,” which occurs when two or more modules define functions with the 
same signature.  Note that many modules may contain the declaration of the 
function (i.e., the function prototype) but only one module may contain the actual 
code (the function's definition). 

a a a 

In large projects it is convenient to combine the object modules into one or more 
object module libraries using a utility program called the librarian.  A librarian 
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also helps to maintain a library and allows you to add, replace, and delete modules 
and list their globals and externals. 
 
The linker is capable of searching specified libraries.  It examines each library and 
picks only those modules that contain remaining unresolved externals. 
 
C++ compilers all come with standard object module libraries containing standard 
functions. Libraries with various useful functions are also available from third-
party vendors. The vendors can provide the documentation, the header files, and 
the object code while keeping their source code confidential — another advantage 
of integration at the object module level! 
 
In modern development environments, the process of linking is 
transparent to the user.  The project maintenance facility usually allows 
programmers to specify which modules should be included into the 
current project; pressing a key or clicking on a menu item automatically 
compiles all the necessary modules and links them into an executable file. 

 

14.6 Global and Static Variables 
 
Several modules may not only use the same functions but also share global 
constants or variables. 
 
A constant or variable declared outside of any function is not only global 
in its own module, but is automatically considered global between 
modules; its name and data type are included in the table of globals and 
passed to the linker. 

 
Other modules may gain access to that variable or constant by declaring it with the 
extern keyword: 
 
// Defining module: 
 
int age_of_universe; 
apstring hello = "Hello, World"; 
const double pi = 3.141592654; 

 
// Another module: 
 
extern int age_of_universe; 
extern apstring hello; 
extern const double pi; 
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A global variable or constant cannot be declared without the extern modifier in 
more than one module because the linker will generate error messages about 
multiple definitions of a global symbol.  On the other hand, extern declarations 
do not conflict with the actual declaration: 
 
extern apstring hello;             // Redundant, but OK. 
apstring hello = "Hello, World"; 

 
So extern declarations may be placed in the header file, which is a good way to 
insure consistency of external declarations between modules. 
 
The extern modifier can also be used with function prototypes, but it is 
redundant, since a function is assumed by default to be external unless it is defined 
in the same module. 
 
Global variables are “considered harmful” even in one module and 
should be avoided at all costs between modules because they violate 
locality and make the project structure intractable.  If used, they should 
be carefully documented. 

a a a 

It is possible to declare a global variable or a function within one module but hide 
it from the other modules.  This is done by using the keyword static in the 
declaration.  For example: 
 
static bool LeapYear(int year); 
 
static const int daysInMonth[12] = 
    {31,28,31,30,31,30,31,31,30,31,30,31}; 
 
static const int daysToMonth[12] = 
    {0,31,59,90,120,151,181,212,243,273,304,334}; 
 
static const char *monthName[12] = { 
    "January", "February", "March", 
    "April", "May", "June", 
    "July", "August", "September", 
    "October", "November", "December" 
}; 
 
 
static bool LeapYear(int year) 
 
{ 
    ... 
} 
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Static variables and functions are not placed into the table of globals and are not 
reported to the linker. 
 
Static declarations belong in the source file; it wouldn't make much sense to place 
them in a header file.  It is good practice always to use static for variables, 
constants and functions restricted to one module; this documents that they are used 
only in this module and allows other modules to use the same name without 
conflict. 
 

14.7 Inline Functions 
 
C++ allows programmers to declare fragments of code as inline functions.  An 
inline function pretends to be a normal function, but instead of implementing it as 
a real function, the compiler just inserts a copy of the inline function's code 
whenever it encounters a call to the function.  Inline functions avoid the overhead 
associated with calling a function but make the executable code bigger.  They 
should be used only for very short functions. 
 
Inline functions may neither be static nor external.  If an inline function is to be 
accessible to many modules, it should be defined in a header file.  For example: 
 
// DATES.H 
 
... 
int DaysBetween(const DATE &date1, const DATE &date2); 
 
inline bool Earlier(const DATE &date1, const DATE &date2) 
{ 
    return DaysBetween(date1, date2) > 0; 
} 
... 

 
Inline functions may use prototypes but usually don't need them because their short 
code can be defined together with the declaration. 
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14.8 Summary 
 
Modularity is essential for sound software design.  Modular programs are easier to 
develop and test, especially for a team of programmers.  They are also easier to 
understand and maintain because certain changes can be implemented locally and 
do not require extensive modifications or retesting of the entire application. 
 
Modules should be designed, implemented, and documented with an eye to their 
possible future use in other projects.  It is desirable to create reusable modules, 
isolating more general functions from more application-specific functions. 
 
Each module is usually implemented in two separate files, a header file and a 
source file.  The header file may contain constants, function prototypes, inline 
functions, definitions of data structures, and declarations of external variables.  
The source code contains function definitions (code) and static variables and 
functions.  The header file is #include-ed into the source code and into other 
modules. 
 
The modules are compiled separately and linked together into one executable 
program by a linker program.   Object modules may be combined into object 
module libraries by using a librarian utility program.  The linker can search 
specified libraries for modules that supply remaining unresolved external 
references and include them into the executable file. 
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15.1 Discussion 
 
The evolution of programming languages is driven in part by the development of 
general ideas about the nature of programming and its methodology.  Classes in 
C++ represent an attempt to foster a programming style in which code is more 
modular, maintainable, and reusable.  They are also an important step towards 
Object-Oriented Programming (OOP). 
 
(In OOP a program is designed as a set of actively interacting objects of different 
types.  The types of objects are often arranged in taxonomic hierarchies in which 
one type of object is viewed as a special case, “a kind of” object of a more general 
type.  An object combines certain attributes and data with procedures (often called 
methods) for processing specific conditions, calls, or messages that the object 
receives from other objects.  A full explanation of OOP methodology is beyond the 
scope of this book.) 
 
This effort has had only partial success.  Just using classes does not guarantee 
well-structured or easily maintainable code; like any powerful tool, classes actually 
give software designers and developers the added responsibility of using them 
properly.  In addition to structural flexibility, classes also offer unprecedented 
syntactic freedom, particularly in redefining the meaning of standard operators.  
This freedom can easily be abused by a novice, leading to intractable code.  In this 
chapter we will cover the essential features and properties of classes, leaving more 
exotic features for later chapters. 
 
In previous chapters we have seen that we can implement a functional module by 
defining some data structures and some functions that operate on those structures.  
Classes take this concept one step further by allowing programmers to define data 
elements and functions that operate on them as one entity, a class, and by imposing 
certain restrictions on the use of its elements. 
 
In the following example, the definition of a class DATE combines data elements 
and function prototypes: 
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class DATE { 
 
  private: 
 
    int month; 
    int day; 
    int year; 
 
  public: 
 
    bool Valid(); 
    int DaysTo(const DATE &date2); 
    ... 
}; 

 
Both data elements and functions are called members of the class. 
 
Like structures, classes are treated as user-defined data types. 

 
The syntax for classes is similar to the syntax for structures.  Variables and 
pointers of the class type may be declared in the same way as built-in and structure 
types.  For example: 
 
int main() 
 
{ 
    DATE date, *dateptr; 
    ... 
    dateptr = new DATE; 
    *dateptr = date; 
    ... 
} 

 

15.2 Public and Private Members, Encapsulation 
 
You may notice the private and public keywords in the class definition.  When 
we use structures, all data elements of the structure are accessible to any function, 
as long as the instance of the structure is in the function’s scope.  If we define: 
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 
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then we can write: 
 
int main() 
 
{ 
    DATE date; 
    ... 
    date.year = 1999; 
    ... 
} 

 
Not so with classes. 
 
In classes, all members are divided into two categories: private and public.  
The public members, both data elements and functions, can be used 
anywhere in the program (as long the class instance is in scope).  They 
define the interface between the class and the rest of the program.  The 
private members are hidden within the class and are accessible only to 
member functions.  They determine the internal structure and workings 
of the class. 

 
(There is no connection between public members of a class and public (global) 
functions or variables in a module.) 
 
The public and private keywords in the class definition designate members of 
a particular type.  The groups of private and public members can be interspersed 
freely in the class definition, but it is customary to group together all private 
members and all public members.  The first group is private by default unless 
overridden with the public keyword.  However, it is better to explicitly label the 
first section as private or public for clarity. 
 
Strictly speaking, a C++ class definition has exactly the same syntax as a 
struct definition.  The only difference between a struct and a class is that in 
a struct the first group of members is by default public, and in a class, private.  
However, programmers usually do not use private members or member functions 
with struct — this is because C, where structs come from, has no classes and 
no public or private members. 
 
The main idea of classes is to combine data elements and functions in one entity 
and to hide data elements within the class by making them accessible only to 
member functions.  This concept is called encapsulation.  For example, the 
innocent-looking code: 
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class DATE { 
 
  public: 
    ... 
 
  private: 
 
    int month; 
    int day; 
    int year; 
}; 
 
int main() 
 
{ 
    DATE date; 
    date.month = 12; 
    ... 
} 

 
would generate the compiler error: 
 
Error …: 'DATE::month' is not accessible in function main() 
 
Some theorists believe that data structures are more susceptible to change over the 
lifetime of a program than function declarations.  Encapsulation assures that any 
change to (private) data elements remains local: it does not affect the rest of the 
program outside the class member functions.  Locality makes program 
maintenance easier.  If, for example, we decided at some point to represent month 
in DATE as a char instead of an int, we would have to change only the member 
functions.  The code outside the class would remain intact. 
 
The default rule notwithstanding, it is common in programs and computer books to 
list the public class members first, followed by the private members.  The rationale 
is that the user of a class is interested only in the class interface, not its 
implementation.  In this book, however, we are often interested in the 
implementation of a class.  It is easier to understand what the member functions do 
after taking a look at the data on which they operate, so sometimes we list the 
private members first. 
 
A class designer typically has to provide special public functions, often referred to 
as accessors, for accessing private data members.  The functions that set or change 
the values of private members are often called modifiers.  For example: 
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class DATE { 
 
  public: 
    ... 
    // Accessors: 
    int GetMonth() {return month;} 
    ... 
    // Modifiers: 
    void SetMonth (int a_month); 
    ... 
 
  private: 
 
    int month; 
    int day; 
    int year; 
 
}; 

 
Accessors and modifiers may seem redundant, but they offer some advantages.  
One advantage is that modifiers can check the arguments to ensure that class data 
members always have valid values: 
 
void DATE::SetMonth(int a_month) 
 
{ 
    if (a_month >= 1 && a_month <= 12) 
        month = a_month; 
} 

 
The advantage of accessors is that the internal representation of a data member 
may change without changing the code outside the class: 
 
class DATE { 
 
  public: 
    ... 
    int GetMonth() {return int(month);} 
    ... 
 
  private: 
 
    char month; 
    int day; 
    int year; 
}; 

a a a 

A class may have accessors and other member functions that do not change any 
data members of the class.  It is a good practice to declare such functions 
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“constant“ by adding the keyword const at the end of the function's prototype and 
the function's header line.  For example: 
 
// apstring.h 
 
class apstring { 
 
  public: 
    ... 
    int length() const; 
    ... 
}; 
 
// apstring.cpp 
 
... 
int apstring::length() const 
 
// Returns the length of the string 
 
{ 
    ... 
} 

 
The keyword const documents and enforces the fact that the function 
does not change the data members of the class.  If a const function 
attempts to change a class member or call a non-const function, the 
compiler reports an error. 

a a a 

Unfortunately, attempts at total encapsulation sometimes fall short of expectations.  
Deadlines and  other pressures from the real world often force programmers to 
bypass full encapsulation and use some public data members.  Others may 
implement encapsulation in letter but not in spirit, providing redundant access 
functions but not performing data validation, or leaving the class interface too 
dependent on the particular internal data representation.  Designing a class that 
strikes a balance between private and public members becomes an elusive art.  The 
ideal of total encapsulation in C++ also fails because the private class members are 
included along with public members in class definitions, which are placed in 
header files.  They are not usable outside the class, but any change to the private 
members of a class requires recompilation of all modules that use the class. 
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15.3 Implementation of a Class 
 
A class is usually implemented as two separate files: a header file and a source file.  
The header file serves the same purpose as header files in the procedural modules 
discussed earlier (see Section 14.3): it contains the definition of the class and is 
included into modules that use the class.  It is also included into the class's source 
file.  The source file contains the bodies of the member functions.  Sometimes a 
few related classes may be implemented in one module, sharing one header file 
and one source file.  The header file may also contain other structures, constants 
and types useful for the class: 
 
// STUDENT.H 
 
enum GENDER {MALE, FEMALE}; 
 
struct DATE { 
    int month; 
    int day; 
    int year; 
}; 
 
class STUDENT { 
 
  private: 
 
    int age; 
    GENDER gender; 
    DATE dob; 
    bool ValidDate(const DATE &date); 
    ... 
 
  public: 
 
    int id; 
    ... 
    GENDER GetGender() {return gender;} 
    void SetGender(GENDER a_gender); 
    void SetGender(char c_gender);  // Second (overloaded) version. 
    DATE GetDOB() {return dob;} 
    void SetDOB(const DATE &date); 
    ... 
}; 

 
Short member functions may be defined inside the class definition.  These 
are automatically treated as inline functions. 

 
The bodies of other member functions are placed in the source file, which usually 
has the same name as the header file with the extension .cpp: 
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// STUDENT.CPP 
 
... 
bool STUDENT::ValidDate(const DATE &date) 
 
{ 
    return (date.year >= 1950 && date.year <= 2100); 
} 
 
... 
 
void STUDENT::SetDOB(const DATE &date) 
 
{ 
    if (ValidDate(date)) dob = date; 
} 
 
... 
 
void STUDENT::SetGender (GENDER a_gender) 
 
{ 
    gender = a_gender; 
} 
 
void STUDENT::SetGender (char c_gender) 
 
{ 
    if (c_gender == 'M') 
        gender = MALE; 
    else if (c_gender =='F') 
        gender = FEMALE; 
} 

 
Note some important features in the above code. 
 
1. Function names are preceded by STUDENT::.  Functions in different classes 

and outside of any classes may have the same names.  In fact, allowing the 
same function names in different objects is a useful feature of the object-
oriented approach, because it is desirable to give the same names to 
semantically close behaviors regardless of the specific type of an object.  The 
definition of the function ValidDateOfBirth(…), for example, may be 
different in the STUDENT class and in the PRESIDENT class.  C++ compilers do 
not automatically assume that all functions in a given source file belong to the 
same class.  To distinguish definitions of functions that belong to a particular 
class, their names are prefixed with the class name and the scope resolution 
symbol ::. 
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2. Private and public functions are defined the same way in the source file.  The 
division into public and private members is specified only in the class 
definition. 

 
3. All member functions can refer to any private or public data members or 

functions just by using their names.  The scope resolution prefix automatically 
puts all class members in scope. 

 
4. Member functions can be overloaded, just like ordinary functions (for 

example, see SetGender(…) above).  Overloading adds flexibility to class 
use. 

a a a 

The class data members' names often clash with the obvious choices for arguments' 
names in member functions.  In the above example, we would be tempted to use: 
 
void STUDENT::SetGender(GENDER gender) 
 
{ 
    ...        // gender = gender ??? 
} 

 
But we cannot, because the name gender is already used for a class member.  This 
may eventually become a nuisance.  Some programmers use a standard prefix in all 
names of class members, such as: 
 
class STUDENT { 
    ... 
    int mAge; 
    GENDER mGender; 
    ... 
} 

 
Others use a prefix for arguments: 
 
void STUDENT::SetGender(GENDER a_gender) 
 
{ 
    ... 
    gender = a_gender; 
} 
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void STUDENT::SetAge(int an_age) 
 
{ 
    ... 
    age = an_age; 
} 

 
Yet others deal with it on a case-by-case basis.  You also have to be very careful 
not to declare local variables whose names clash with class member names. 
 

15.4 Syntax for Accessing Class Members 
 
We have seen that all class members are in scope and can be accessed simply by 
their names inside member functions.  Outside the class, we need to associate a 
class member with a variable or a pointer of the class type that represents a 
particular instance of the class. 
 
The syntax for accessing a class’s public data members outside the class is the 
same as for accessing struct members.  For example: 
 
// STUDENT.H 
 
class STUDENT { 
 
  public: 
 
    int id; 
    ... 
}; 

 
// TEST.CPP 
 
#include "student.h" 
 
... 
 
int main() 
 
{ 
    STUDENT student, *studentPtr; 
    ... 
    student.id = 269; 
    studentPtr = new STUDENT; 
    studentPtr–>id = student.id; 
    ... 
} 

 



270 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

The syntax for invoking member functions, however, is new.  It imitates the syntax 
for accessing a data member of a structure or a class by placing the class instance 
name first, followed by a dot or an arrow (for a pointer), followed by the member 
function’s name and arguments.  For example: 
 
// TEST.CPP 
 
int main() 
 
{ 
    STUDENT student, *studentPtr; 
    int age; 
    ... 
    studentPtr = new STUDENT; 
    age = student.GetAge(); 
    studentPtr–>SetAge(age); 
    ... 
} 

 

15.5 Constructors and Destructors 
 
C++ aims to make user-defined types as easy to use as built-in types.  In particular, 
user-defined types may be declared, and their values initialized, the same way as 
built-in types.  Some classes, however, may require a special initialization 
procedure before they can be used: they may need members initialized, arrays 
allocated for internal storage, etc.  When they are no longer useful, class instances 
may require some final cleaning up before they disappear: they may need memory 
released, etc.  C++ makes the initialization and clean-up automatic, transparent to 
the programmer.  This is accomplished by two special public class member 
functions called the constructor and destructor. 
 
The constructor has the same name as the class.  The destructor has the name of the 
class preceded by ~.  For example: 
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// apstring.h 
 
class apstring { 
 
  public: 
 
    apstring(const char str[]); // Constructor from a literal string 
    ... 
    ~apstring();                // Destructor 
 
  private: 
 
    int mLength;       // The actual length of the string 
    int mCapacity;     // The size of the available string buffer 
    char *mCstring;    // Pointer to the string buffer 
}; 

 
 
// apstring.cpp 
 
apstring::apstring(const char str[]) 
 
// Constructor: builds an apstring from a null–terminated string, 
//   such as "abcd". 
 
{ 
    mLength = strlen(str);          // Get the length of the string 
    mCapacity = mLength + 1;        // +1 to hold the terminating null 
    mCstring = new char[mCapacity]; // Allocate the string buffer 
    strcpy(mCstring, str);          // Copy str into the buffer 
}    

 
In the above example the constructor is used to initialize the mLength and 
mCapacity members of apstring, to allocate the string buffer, and to copy the 
string characters into it. 
 
Neither the constructor nor the destructor has a return type, not even 
void.  In addition, destructors do not take any arguments.  Both 
constructors and destructors can be inline functions. 

 
You do not have to define a constructor or destructor.  If you don't, C++ generates 
a default constructor with no arguments (see Section 21.4). 

a a a 

It may be a good exercise to create a simple class and write a constructor and a 
destructor that print out messages.  This will make clear at what point a test 
program calls them. 
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a a a 

Like ordinary functions, constructors can be overloaded.  For example: 
 
// apstring.h 
 
class apstring { 
 
  public: 
 
    apstring();                 // Constructor: makes an empty string 
    apstring(const char str[]); // Constructor from a literal string 
    ... 

 
The source code has to define all forms of overloaded constructors.  For example: 
 
// apstring.cpp 
 
apstring::apstring() 
 
// Constructor: Builds an empty string. 
 
{ 
    mLength = 0; 
    mCapacity = 1; 
    mCstring = new char[1]; // Allocate the string buffer for one char  
    mCstring[0] = '\0';      // The string buffer has only a null char 
} 
 
apstring::apstring(const char str[]) 
 
// Constructor: builds an apstring from a null–terminated string, 
//   such as "abcd". 
 
{ 
    mLength = strlen(str);          // Get the length of the string 
    mCapacity = mLength + 1;        // +1 to hold the terminating null 
    mCstring = new char[mCapacity]; // Allocate the string buffer 
    strcpy(mCstring, str);          // Copy str into the buffer 
}    

 
Destructors cannot be overloaded. 
 
Constructors and destructors are called automatically.  The constructor 
is called when a variable of the class type is declared, or when one is 
created with the new operator.  The destructor is called when the variable 
goes out of scope or is deleted with the delete operator. 
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For global variables, the constructor is called before main() and the destructor is 
called after main(), before the program returns to the operating system.  If you 
create a new object with the new operator, you are responsible for deleting it with 
delete. 
 
When a class constructor takes arguments, an instance of that class (i.e., a variable 
or a constant of the class data type) has to be declared with the corresponding 
argument values placed in parentheses after the variables' name.  For example: 
 
    DATE date(12, 31, 1999); 
    ifstream inpFile("TEST.DAT"); 
    apstring fileName("TEST.DAT"); 

 
The same applies to creating instances of a class with the new operator.  For 
example: 
 
    DATE *pDate = new DATE(12, 31, 1999); 

a a a 

If a constructor takes one argument, then you can use the conventional form of 
initialization of a constant or a variable as well.  For example: 
 
    apstring fileName = "TEST.DAT"; 

 
The two forms— 
 
    apstring fileName("TEST.DAT"); 

and 
    apstring fileName = "TEST.DAT"; 

 
—are interchangeable; both call the constructor 
 
apstring::apstring(const char str[]); 

 
It is largely a matter of taste which form of declarations you use.  Some 
programmers always use the parenthesized form because it is more general: it 
works for constructors with one argument as well as constructors with two or more 
arguments.  It is also used in initializer lists, as explained in Section 21.2.  
Actually, the parenthesized form is also acceptable with built-in data types, and 
some C++ purists use only that form.  For example: 
 
int count(0); // The same as: int count = 0; 

 
But this takes some getting used to. 
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Our preference is to use the assignment form for built-in types and for single-
argument constructors whenever, conceptually, the constructor copies or converts 
the argument into the class instance.  The argument data type must be the same or 
closely related to the class.  So we write: 
 
apstring fileName = "SAMPLE.TXT"; 

 
but 
 
ifstream inpFile("SAMPLE.TXT"); 

 
In both cases the class object is constructed with one argument, a literal string.  But 
in the first case the literal string is converted and copied into the variable of type 
apstring, while in the second case the constructor simply opens the file with the 
given name. 

a a a 

C++ allows you to declare functions with default values for some of their 
arguments.  The arguments with default values must be grouped at the end of the 
argument list.  The default values for the arguments are supplied in the function 
prototype.  For example: 
 
void LoadDictionary(apvector<ENTRY> &dict, 
         const apstring &fileName = "DICT.DAT", int maxwords = 1000); 

 
A call to a function with default values for its arguments may omit these arguments 
in the call.  For example, you can call the above LoadDictionary(…) function 
with three, two, or just one argument: 
 
LoadDictionary(dict); 
    // The same as: LoadDictionary(dict, "DICT.DAT", 1000); 
 
LoadDictionary(dict, "FRENCH.DAT"); 
    // The same as: LoadDictionary(dict, "FRENCH.DAT", 1000); 
 
LoadDictionary(dict, "SPANISH.DAT", 20000); 
    // Values for all arguments are supplied explicitly. 

 
This feature can be used with class constructors.  For example, we could declare a 
constructor for the DATE class with the default argument: 
 
    date::date(int month, int day, int year = 2000); 
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Then both declarations 
 
    DATE date1(12, 31, 1999); 
    DATE date2(1, 1);   //  Same as:  DATE date2(1, 1, 2000); 

 
become valid. 
 

15.6 Lab: Add a Constructor to the apstring Class 
 
Examine the declarations and the code for constructors for the apstring class.  
Add a constructor that would allow you to declare an apstring of a given length, 
filled with a given character.  Use a for loop to set all the characters in the string 
buffer to the “fill” character; don't forget to add the terminating null ('\0') 
character at the end. 
 
Use the new constructor to print a line that contains 13 stars. 
 

For “extra credit”: 
 
Supply a default value for the char argument so that if the fill character is not 
specified in the declaration, the string is filled with spaces. 
 
Write a program that prints a “triangle” with seven rows of stars: 
 
      * 
     *** 
    ***** 
   ******* 
  ********* 
 *********** 
************* 

 
Use your new constructor to declare two strings of the required lengths, one filled 
with spaces and the other filled with stars.  Place these declarations inside the loop 
that prints the rows of the triangle.  Besides these declarations, all you need is one 
output statement, so your code will be very concise. 
 
The above solution illustrates how constructors do the work behind the scenes.  
But it also illustrates the common tradeoff in C++ between code clarity and 
performance.  In a more conservative approach, you can declare one large enough 
string outside the loop.  Initially this string is filled with spaces.  Then, within the 
loop, you can flip a couple of characters from spaces to stars and print the string.  
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Implement this solution, too.  Your code will be just a bit longer and perhaps not 
as elegant, but it will run faster.  Explain why. 
 

15.7 Lab: Vending Machine Class 
 
Write a class SODA that simulates a soda vending machine.  The class should keep 
track of the total money deposited into a machine and the inventory for several 
brands.  For the sake of simplicity, initialize the inventories to the same number for 
all drink brands.  Place the initialization code in the class constructor.  Have the 
constructor display instructions for use of the machine.  The destructor should print 
a message about the total money collected in the machine. 
 
The public members, in addition to the constructor and the destructor, should be 
three functions: 
 
    void AddMoney(int cents); 
    void ReturnMoney(); 
    void DispenseDrink(int brand); 
 

DispenseDrink(…) should check whether the chosen brand is available and 
enough money deposited, print appropriate messages, and report the customer’s 
change. 
 
The other functions should print appropriate messages; for example, 
AddMoney(…) may display the total amount deposited by the customer. 
 
Make the drink price a private member of the class (you may want to provide a 
function to set it to a desired value).  Since we have not yet covered how to declare 
and use static members in a class, declare the brand names in a separate static array 
outside the class: 
 
static const int BRANDS = 5; 
static const char *brandName[BRANDS] = { 
    "PepC++", 
    ... 
}; 

 
Write a small test program that will use your class.  It will display a menu of three 
items (“Add Money,”  “Select Drink,”  “Return Money”) and call the appropriate 
class member function. 



 CHAPTER 15 ~ CLASSES 277 
 

 

15.8 Summary 
 
Classes in C++ implement user-defined types with great flexibility.  They combine 
functions and data elements in one entity and implement “members-only” access to 
their private members.  All data elements may be hidden from non-member 
functions and made accessible only through public member functions — a concept 
known as encapsulation. 
 
Each class has two special functions, a constructor and a destructor, which are 
called automatically when a variable of a class type is created and destroyed. 
 
Classes, if used properly, enforce modularity and facilitate code maintenance and 
reusability.  However, they also may present many pitfalls for the uninitiated. 
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16.1 Discussion 
 
C++ is a strongly typed language: every variable or function argument must be 
declared with a particular built-in or user-defined type.  This helps programmers 
avoid some errors and helps compilers produce more efficient code.  In many 
cases, however, the desired functionality is identical for different data types and 
can be expressed with exactly the same code simply by substituting one type for 
another.  For example, a function that swaps two integers: 
 
void Swap (int &a, int &b) 
 
{ 
    int temp = a;  a = b;  b = temp; 
} 

 
will become a function that works for doubles if we simply substitute double for 
int everywhere in the code.   If we define our own type: 
 
struct POINT { 
    int x; 
    int y; 
}; 

 
and substitute POINT for int everywhere in the Swap(…) function, the new 
function will swap two “POINTS”: 
 
void Swap (POINT &a, POINT &b) 
 
{ 
    POINT temp = a;  a = b;  b = temp; 
} 

 
Thanks to the function overloading feature of C++, all these functions can coexist 
without any conflict: the compiler knows which one to call based on the types of 
the specified arguments.  It may be quite tedious for the programmer, though, to 
copy the same code over and over.  More importantly, any change would have to 
be duplicated in all forms of the function.  It may also be difficult to foresee all the 
necessary forms of a function, so that the new forms may have to be added later.  
These drawbacks undermine the ideal of easily maintainable and reusable code. 
 



 CHAPTER 16 ~ TEMPLATES 281 
 

Recognizing these difficulties, the designers of C++ have added to the later 
versions of the language a feature called parameterized types, or templates.  This 
feature automates the process of writing multiple forms of the same function with 
arguments of different types.  Instead of a concrete data type — int, double, 
POINT — you write your code with an arbitrary parameter name, which the 
compiler replaces with different concrete data types when it learns how the 
function is used.  In other words, the data type itself becomes a parameter for the 
function's template. 
 
Templates can be also used with classes.  The apvector and apmatrix classes 
are examples of templated classes that work with elements of different data types. 
 

16.2 Syntax for Templates  
 
A templated function’s prototype and definition are preceded with the expression: 
 
template <class typeparameter> 

 
template and class are reserved words, and typeparameter is any name of your 
choice which will be used as replacement for concrete type specifiers.  The 
keyword class here has little relation to C++ classes, but it is required, and 
forgetting it causes a syntax error. 
 
The templated function Swap(…) looks like this: 
 
template <class SOMETYPE> 
void Swap (SOMETYPE &a, SOMETYPE &b) 
 
{ 
    SOMETYPE temp = a; a = b; b = temp; 
} 

 
A templated function can be called with any built-in type or any user-defined type 
implemented with typedef, enum, struct, or class. 
 
More elaborate functions may use two or more parameterized types.  The syntax is: 
 
template <class typeparameter1, class typeparameter2, ...> 
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16.3 Classes with Parameterized Types 
 
A templated class can use parameterized types anywhere in its definition where a 
built-in or user-defined type would be appropriate.    The statement  
 
template <...> 

 
precedes the definition of the class. 
 
As an example, let us consider the apvector class.  As we know, this class 
implements dynamic arrays with the data type of the array elements as a parameter 
in the class definition.  The authors of the class chose the name itemType for that 
parameter: 
 
// apvector.h 
 
template <class itemType>  
class apvector { 
 
  public: 
   
  // Constructors/destructor: 
    apvector();                       // Default constructor 
    apvector(int size);               // Initial size of vector is size 
 
    apvector(int size, const itemType &fillValue ); 
                                      // Fills the array with fillValue 
    apvector(const apvector &v);      // Copy constructor 
    ~apvector();                      // Destructor 
     
  // Overloaded assignment operator: 
    const apvector &operator= (const apvector &v); 
 
  // length and resize functions: 
    int  length() const; 
    void resize(int newSize); 
   
  // Overloaded subscripting operator []: 
    itemType &operator[] (int index); 
     
  private: 
                                                 
    int  mSize;                       // Number of elements in the array 
    itemType *mBuffer;                // Pointer to the buffer that 
                                      //   holds elements of the vector 
}; 
... 
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In a templated class each member function or operator is a templated function.  For 
example: 
 
// apvector.h 
... 
 
template <class itemType> 
int apvector<itemType>::length() const 
 
{ 
    return mSize;  
} 

 
The first line declares that length() is a templated member function (even 
though it does not use any itemType arguments).  apvector<itemType> in the 
second line is the full name of the class that precedes the scope resolution operator.  
The above syntax is cumbersome and redundant, but we have no other choice if we 
want to code templated classes. 
 
In a templated class the bodies of all member functions are placed in the header 
file.  They cannot be placed in a separate .cpp file because the compiler can 
generate their code only after it sees how the class is used.  This is explained in 
more detail in the next section.   
 
For templated classes the data type parameter is instantiated when we declare 
variables or constants of the class type.  This is accomplished by placing the actual 
data type (any  built-in or previously defined data type) in angular brackets after 
the class name.  For example: 
 
// MYPROG.CPP 
 
... 
#include "apvector.h" 
 
struct ENTRY { 
... 
}; 
 
... 
int main() 
 
{ 
    apvector<double> sample(100); 
    apvector<int> counts(1000, 0); 
    apvector<apstring> text; 
    apvector<ENTRY> dict(MAXWORDS); 
    ... 
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The code that uses the above declarations essentially treats apvector<int>, 
apvector<double>, apvector<apstring> and apvector<ENTRY> as four 
new data types. 
 

16.4 How to Use Templates 
 
The compiler generates code for a templated function only when it sees that it is 
used and figures out how.  If the templated function is used with different data 
types, the compiler will generate several overloaded functions, one for each form 
used. 
 
The same applies to templated classes. 
 
The code of the member functions in a templated class is placed in the 
class's header file because this code must be included into each source 
module that uses the class. 

 
Templates save space in source code and simplify code maintenance at the source 
level.  But they undermine modularity at the object (compiled) code level.  Any 
change in the body of a member function requires recompilation of each program 
or module that uses the class. 
 
Templates do not save space in the executable program, because each form of a 
function or a class used in the program has its own code.   In fact, it is very easy to 
end up with several very similar pieces of code in the same compiled module and 
several identical pieces of code in different modules.   
 
Templates are convenient for small general-purpose functions, especially inline 
functions such as swap, abs, max, min, and so on.  They are also useful for 
generalized implementations of common algorithms.  For example, templated 
implementations of binary search, sort, or merge may apply to any objects for 
which the operators ==, <=, etc. are defined.  Data structures such as list, stack, 
queue can be implemented as templated classes usable with elements of any data 
type. 
 
Like all tricky C++ features, though, templates have some pitfalls.  Some 
programmers may get carried away with the idea of the universal applicability and 
eternal life of their programs and clutter their code with templates that make it 
unreadable.  In the end, each template (and perhaps even the whole program...) 
may be used only once. 
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a a a 

A more technical difficulty is making sure that a templated function or 
class works properly with all the specific types for which it is intended.  
The requirements for these types have to be documented. 

 
Suppose we wrote a templated function Sum(…) that returns the sum of the 
elements of a vector: 
 
template <class SOMETYPE> 
SOMETYPE Sum(const apvector<SOMETYPE> &v) 
 
{ 
    SOMETYPE total = 0; 
    int i, n = v.length(); 
         
    for (i = 0;   i < n;   i++) 
        total += v[i]; 
 
    return total; 
} 

 
This function will work properly when used with apvector<int> or 
apvector<double>.  But what happens if we decide to try it for  
apvector<apstring>?  After all, the apstring class has the += operator, 
which appends a string to the left-hand side.  So we could expect that the Sum(…) 
function returns all the elements of v concatenated together in one string.  That 
would make sense, but unfortunately it doesn't work!  The problem arises from the 
innocuous declaration 
 
    SOMETYPE total = 0; 

 
This is the same as 
 
    SOMETYPE total(0); 

 
and it assumes that SOMETYPE has a constructor with one integer argument.  But 
the apstring class does not have such a constructor; the linker will report an 
error that the function apstring::apstring(int) is undefined.  We could add 
the following constructor to the apstring class: 
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    // Constructors: 
    ... 
    apstring(int len) // builds a string of length len, 
                      //   filled with spaces 

 
Then, if SOMETYPE is apstring,  
 
    SOMETYPE total = 0; 

 
would declare an empty string, and Sum(…) would work properly. 
 

16.5 Lab: Adding Functions to the apvector Class 
 
1. Add the member functions max(), min(), and sum() to the apvector class.  

These functions should return the largest element, the smallest element, and 
the sum of all elements, respectively.  The new functions should work for all 
numeric types of vector elements.  Test the new class on vectors of ints and 
doubles. 

 
2. Recall the modified version of the apstring class that you created in Lab 

15.6.  That version has the additional constructor: 
 
      apstring(int len, char fill = ' '); 

 
Test your max(), min(), and sum() functions on apvector<apstring> 
with the modified apvector and apstring classes. 

 

16.6 Summary 
 
Templates are a convenient tool for getting around the strong type checking in 
C++.  Many small functions, as well as general-purpose algorithms and data 
structures, can be implemented as templates.  Templates are also a useful tool for 
demonstrating these data structures and algorithms in a type-independent manner. 
 
The templates reduce the source code’s size and improve its maintainability and 
reusability by eliminating repetitive overloaded definitions.  However, the 
templates do not reduce the size of the executable code.  On the contrary, they are 
deceptive in making it very easy to produce multiple pieces of very similar 
compiled code in the same module or identical code fragments in different 
compiled modules. 
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The syntax for templates is cumbersome and hard to remember without some 
“cookbook” examples.  Overuse of templates may render your code unreadable 
and may offset all the benefits of easier maintenance by making it impossible to 
understand your program in the first place. 
 
When you write code with templates, you should understand and document what 
kinds of objects the template is intended for and make sure these objects can 
interpret all the operators applied to them in the template's code. 
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17.1 Data Structures and Abstract Data Types 
 
This chapter opens our discussion of a series of data structures that constitute a 
standard set of tools in software design and development.  These include lists, 
stacks, queues, trees, and other structures. 
 
A data structure combines a method for data organization with methods 
of accessing and manipulating the data. 

 
For example, an array becomes a data structure for storing a set of elements when 
we provide functions to insert and remove an element.  Similar functionality can be 
achieved with a linked list structure, which we will explain shortly.  At a very 
abstract level, we can think of a general “list” object: a list contains a number of 
elements; we can insert elements into the list and remove elements from the list. 
 
An abstract description of a data structure, with the emphasis on its properties, 
functionality, and use rather than a specific implementation, is referred to as an 
Abstract Data Type (ADT).  An ADT defines an interface (set of access methods) 
to an abstract data organization without specifying the details of implementation. 
 
A “List” ADT, for example, may be specified as follows: 
 

"List" ADT: 
 
Data organization: 
 
    Contains a number of data elements arranged in 
    a linear sequence. 
 
Functions: 
 
    Create an empty List; 
    Insert an element into List; 
    Remove an element from List; 
    Traverse List (process or print out all elements 
      in sequence, visiting each element once); 
    Destroy List. 
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The “List” ADT can be further specialized.  We can require, for example, that an 
element always be inserted at the “tail” of the list and removed from the “head” of 
the list.  Such an ADT can be called a “Queue”; it describes the “first-in-first-out” 
(FIFO) data access method.  Or we can require that the elements in the list be 
arranged in ascending alphanumeric order and stipulate that the insert function put 
the new element into the right place in the order.  This can be called the “Ordered 
List” ADT. 
 
The data structures and ADTs that we are going to study are not specific to C++ — 
they can be implemented in any programming language. 
 
We have already seen (Part 1, Section 8.3 and Lab 8.4) that the “List” ADT can be 
implemented as an array.  In the following sections we will show how to 
implement the “List” ADT as a linked list and discuss the advantages and 
disadvantages of each implementation.   
 
The preferred C++ implementation of an ADT is a class. 

 
But in this chapter we will implement linked lists in the old-fashioned way: as 
structures and functions that work with them.  This will allow us to avoid some 
minor technical difficulties that we are not quite ready to handle. 
 

17.2 Linked List Data Structure 
 
The elements of an array are stored in consecutive locations in computer memory.  
We can calculate the address of each element from its sequential number in the list.  
By contrast, the elements of a linked list may be scattered in various locations in 
memory, but each element contains a pointer to the next element in the list.  The 
last element's pointer is set to null. 
 
Metaphorically, we can compare an array to a book: we can read its pages 
sequentially or we can open it to any page.  A linked list is like a magazine article: 
at the end of the first installment it says “continued on page 27.”  We read the 
second installment on page 27, and at the end it says “continued on page 36”, and 
so on, until we finally reach the ♦ symbol that marks the end of the article. 
 
We will refer to the elements of a linked list as “nodes.”  A node contains 
some information useful for a specific application and a pointer to the 
next node. 
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Let us say the information is represented by a data type SOMETYPE, which can be a 
built-in type, a string, or a structure.  Let us call the pointer to the next node 
“next”.  We can combine these elements in a structure NODE: 
 
struct NODE { 
    SOMETYPE data; 
    NODE *next; 
}; 

 
Note two things about this definition.  First, “next” is a name chosen by the 
programmer: it is not required by C++ syntax.  We could have called it “link” or 
“nextptr” or “polliwog.”  The name of the structure, “NODE”, is also chosen by 
the programmer.   
 
Second, the definition is self-referential: it refers to the NODE* data type inside the 
NODE data type definition!  C++ allows this as long as the member is a pointer to 
NODE.  The definition would not make much sense if one of the members of NODE 
were a NODE.  A pointer, on the other hand, takes a fixed amount of space; the 
compiler can calculate the size of the NODE structure without paying much 
attention to what type of pointer next is.  The compiler uses the fact that next has 
the data type NODE* (as opposed to any other pointer type) only for type checking 
later in the code. 
 
As an example, let us consider a list of departing flights on an airport display.  The 
flight information may be represented in a FLIGHT structure: 
 
struct FLIGHT { 
    int  number;             // Flight number 
    apstring destination;    // Destination city 
    ... 
}; 

 
Suppose a program has to maintain a list of flights departing in the next few hours, 
and we have decided to implement it as a linked list.  A node of the list can be 
represented as: 
 
struct NODE { 
    FLIGHT flight; 
    NODE *next; 
}; 

a a a 

When a program creates a linked list, it usually starts with an empty list.  A new 
node is dynamically allocated from the free store using the new operator, and the 
desired information is copied into it.  A newly created node is linked to the list by 
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rearranging the pointers.  Thus, a linked list does not have to have a predetermined 
size.  Its maximum size is potentially limited only by the size of the free store, 
which may depend on the total computer memory.  Since each node of the list is 
allocated with the new operator, the nodes have to be destroyed with the delete 
operator one by one when the list is no longer needed. 
 
When we discuss the code involved in handling linked lists, it is sometimes 
convenient to use diagrams that represent the nodes and links (pointers).  In 
Figure 17-1, the boxes represent nodes and the arrows represent the values of 
pointers.  The pointer in the last node is null. 
 

 data data data

data data

 
Figure 17-1.   A linked list diagram 

 
 

17.3 Linked List Traversal 
 
Let us give the name “head” to the variable that holds a pointer to the first node of 
the list: 
 
    NODE *head; 

  
head is set to null when the list is empty: 
 
    NODE *head = 0;  // Declare an empty list. 

 
After we build up our list, head points to the first node.  Note that in this 
implementation head is not a node, just a pointer to the first node of the list.  
head–>next points to the second node, and so on, with the pointer to each next 
successive node contained in the previous one’s next element.  If nodePtr is a 
variable of the NODE* data type and nodePtr points to a node in our list, then the 
value of nodePtr–>next is the pointer to the next node (or nodePtr–>next is 
null, if there is no next node).  We can construct a for loop that goes through all 
the elements of the list in sequence as follows: 
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    NODE *nodePtr; 
    for (nodePtr = head;   nodePtr;   nodePtr = nodePtr–>next) { 
        ...  // Process the list element pointed to by "nodePtr". 
    } 

 
In this loop we first set nodePtr equal to head so that it points to the first element 
of the list.  If the list is empty (i.e., head == 0),  nothing else happens.  Otherwise, 
we process the element pointed to by nodePtr.  At the end of each iteration the 
value of nodePtr is updated so that it points to the next element of the list.  The 
iterations proceed until nodePtr becomes null, indicating that we have processed 
the last element of the list. 
 
A procedure that accesses and processes all elements of a data structure in 
sequence is called traversal.  The above for loop is a simple and convenient way 
to traverse a linked list. 
 
Due to the nature of linked lists, information stored in nodes is always 
accessed through a pointer to a node. 

 
For example, if a list is defined as: 
 
struct FLIGHT { 
    int  number;             // Flight number 
    apstring destination;    // Destination city 
    ... 
}; 
 
struct NODE { 
    FLIGHT flight; 
    NODE *next; 
}; 

 
and nodePtr points to a node in the list, then the information in the node can be 
accessed as: 
 
    nodePtr–>flight; 

 
The individual elements of the FLIGHT structure can be accessed as: 
 
    nodePtr–>flight.number; 
    nodePtr–>flight.destination; 
    ... 

 
A function for traversing and displaying a list of departing flights may look as 
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follows: 
 
void DisplayList(NODE *head) 
 
{ 
    NODE *node; 
 
    for (node = head;   node;   node = node–>next) { 
        cout << node–>flight.number <<  "  " 
             << node–>flight.destination << "  " 
             ... 
             << endl; 
    } 
} 

 
(Since we always deal with pointers when we handle linked lists, we consider it 
too cumbersome to name a local variable nodePtr; we prefer simply node, as in 
the above example.) 
 
When we are working with an array, we can access its elements sequentially or we 
can go directly to a particular element.  For instance, if array a has 12 elements 
(a[0],…, a[11]), and we want to access, say, the seventh element, we can go 
directly to a[6].  This property is called random access.  A linked list is an 
inherently sequential-access structure: to get to a certain element we always have 
to start from the first node of the list and traverse the list until we get to the node 
we are looking for. 

a a a 

As we have seen, the NODE *head variable plays a dual role: by pointing 
to the first node of the linked list, it also points to the whole list 
(Figure 17-2).  We could introduce a special data type which would 
represent a linked list as a whole: 

 
struct LIST { 
    NODE *head; 
}; 

 
But at the moment this seems redundant.  When we need to pass a linked list to a 
function,  we can simply pass the head pointer as we have done in the 
DisplayList(…) function above. 
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 data  data data

data data

 
Figure 17-2.   A linked list is defined by the head pointer 

 
 
 

17.4 The Insert Function 
 
Let us consider a list that contains character strings such as names of cities: 
 
struct NODE { 
    apstring city; 
    NODE *next; 
}; 

 
Suppose we want to add information to a linked list.  We can define an 
Insert(…) function that inserts an element at the “head” (beginning) of the list.  
The function takes two arguments: a list (really a pointer to the first node of a list) 
and the information for the new node — in our case, a name of a city.  We can 
make the function return a STATUS value, OK or FAILED: 
 
enum STATUS {FAILED, OK}; 
 
STATUS Insert(NODE* &head, const apstring &city); 

 
The Insert(…) function adds the node at the head of the list, and the added node 
becomes the new head.  Therefore, the head of the list changes and has to be 
passed to the Insert(…) function by reference.  This is expressed in the 
following syntax:  
 
...  NODE* &head  ... 

or  
...  NODE *&head  ... 

 
— “a reference to a pointer to a NODE...” 



 CHAPTER 17 ~ LINKED LISTS 297 
 

 
The first two steps are to allocate a new node and to copy the information into it.  
The final step is to “link” the node to the list: 
 

  LIST.CPP               � 
... 
#include "apstring.h" 
... 
 
//**************************************************************** 
 
STATUS Insert (NODE* &head, const apstring &city) 
 
// Inserts "city" at the head of the linked list. 
// Returns OK if successful, FAILED if could not 
//   allocate a new node. 
 
{ 
    NODE *newnode; 
 
    // 1. Allocate a new node: 
 
    newnode = new NODE; 
    if (!newnode) 
        return FAILED;      // Out of memory. 
 
    // 2. Copy the information into the new node: 
 
    newnode–>city = city; 
 
    // 3. Link the new node to the list: 
 
    newnode–>next = head;   // Append the old list to newnode. 
    head = newnode;         // Change the head to newnode. 
 
    return OK; 
} 

 
The “linking” action is illustrated in Figure 17-3. 
 
When we implement linked list functions, we have to pay special attention to 
singular situations, such as when the list is empty or when we insert or remove a 
node at the head or tail of the list.  Luckily, in this case we did not have to do 
anything special — the code works for an empty list as well.  If head is null, 
newnode–>next is appropriately set to null. 
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 data

  // Allocate a new node and copy data into it:
  newnode = new NODE;
  newnode->data = data;

  // Link newnode to the list:
  newnode->next = head;
  head = newnode;

 data data data

data

 data data data

data

 data

head

newnode

head

 
 

Figure 17-3.   Inserting a new node at the head of a linked list 
 

a a a 

Now let us implement the InsertInOrder(…) function.  This function assumes 
that the list is arranged in alphabetical order and inserts a new element so that the 
order is preserved.  The first two steps are the same — allocate a node and copy 
the information into it.  But the linking step is slightly more complicated because 
we have to find the right place in the list to insert the new node.  We have to keep 
track of two nodes so that we can insert the new node between them.  Let’s call 
them node and prev (for “previous”): 
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  LIST.CPP               � 
STATUS InsertInOrder (NODE* &head, const apstring &city) 
 
// Inserts "city" in alphabetical order into the linked list. 
//   Assumes that the list is arranged in alphabetical order. 
//   Duplicate names are allowed. 
// Returns OK if successful, FAILED if could not 
//   allocate a new node. 
 
{ 
    NODE *newnode; 
 
    // 1. Allocate a new node: 
 
    newnode = new NODE; 
    if (!newnode) 
        return FAILED; 
 
    // 2. Copy the information into newnode: 
 
    newnode–>city = city; 
 
    // 3. Link newnode to the list: 
 
    //    3.1. Find the right place to insert newnode –– 
    //           between "prev" and "node": 
 
    NODE *node = head, *prev = 0; 
 
    while (node && node–>city <= city) { 
        prev = node;              // ... advance node and prev 
        node = node–>next; 
    } 
 
    //    3.2. Link newnode between "prev" and "node": 
 
    newnode–>next = node;       // Append "node" to newnode.  
    if (prev) 
        prev–>next = newnode;   // Insert after "prev". 
    else 
        head = newnode;         // No prev –– make newnode the 
                                //   new head. 
    return OK; 
} 

 
The searching and “linking” steps are illustrated in Figure 17-4.  Note that the 
function still works when the element has to be inserted at the end of the list: then 
node is null and newnode–>next is set to null.  If the element has to be inserted 
before head, then prev remains set to null and we appropriately change head to 
newnode.  Verify that the above code works for an empty list as well. 
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 C

 C

  A  B  D

 prev
 node

 C

  A  B  D

 prev
 node

 node
 prev

  // Allocate a new node and copy data into it:
  newnode = new NODE;
  newnode—>data = data;

  // Find the place to insert the new node:
  NODE *node = head, *prev = 0;
  while (node && node—>data < newnode—>data) {
      prev = node;
      node = node—>next;
  }

  // Link newnode to the list:
  newnode—>next = node;
  prev—>next = newnode;

  A  B  Dhead

head

newnode

head

 
 

Figure 17-4.   Inserting a new node into an ordered linked list 
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Note that since there are situations where head changes, we have to pass 
it by reference to the function. 

 

17.5 Lab: Creating, Traversing and 
Destroying a Linked List 

 
Create a file containing a few names of cities in random order.  Place each name on 
a separate line.  Write a program that reads the names from the file and puts them 
into a linked list. 
 
It is better to write a separate function that opens and reads the file and builds the 
list.  For example: 
 
STATUS LoadList (NODE* &head, const apstring &fileName); 

 
Implement and test three different versions of the LoadList(…) function: 
 
1. LoadList1(…) calls the Insert(…) function within a loop. 
2. LoadList2(…) calls the InsertInOrder(…) function within a loop. 
3. LoadList3(…) builds the list directly.  It keeps track of the tail of the list and 

appends elements at the tail. 
 
In the third version, link each newly created node newnode to the tail as follows: 
 
    NODE *head = 0, *tail = 0, *newnode; 
 
    ... 
    while (...) {  // For each line in the file... 
        ... 
        // Allocate newnode and copy info into it: 
        ... 
 
        newnode–>next = 0; 
 
        if (!head)             // If the list is empty... 
            head = newnode; 
        else 
            tail–>next = newnode; 
 
        tail = newnode;        // Update tail 
    } 
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Provide the DisplayList(…) function to display your list after it has been 
created.  What can you tell about the order of names in the list for each of the 
above three LoadList(…) functions? 
 
Write a function that destroys a list: 
 
void DestroyList(NODE *head); 

 
The DestroyList(…) function must delete the nodes of the list one by one.  You 
have to be careful not to delete a node before you have saved the pointer to the 
next node.  The following code, for example, is wrong: 
 
    while (...) { 
        // *** Wrong code! *** 
        delete head;        // Delete node pointed to by "head". 
        head = head–>next;  // head–>next is undefined, once memory 
                            //   pointed to by "head" is released. 
    } 

 
Instead, use a temporary variable to save the next pointer. 
 
Call the DestroyList(…) function at the end of your program. 
 
Some compilers provide a function that returns the total size of free memory.  For 
example, the Borland C++ compiler has the function coreleft(), defined in 
alloc.h: 
 
#include <alloc.h> 
   ... 
   cout << coreleft() << endl; // Display the size of free memory. 

 
You can use the above statement to show the size of free memory at the beginning 
of the program, after creating a linked list, and at the end of the program after the 
list is destroyed.  If the first and the third numbers are the same, your program is 
behaving itself. 
 

17.6 The Remove Function 
 
Now let us consider how we can implement a Remove(…) function that removes 
the node with a given value from the list and deallocates its memory: 
 
STATUS Remove (NODE* &head, const apstring &city); 
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If the list has several nodes that match the specified value, the version of the 
function presented here will remove only the first one it finds. 
 
The code works as follows: we go along the list and keep pointers to the previous 
and the current nodes until we find a match.  We then “unlink”  the node and 
connect the previous node directly to the next node.  Finally we delete the unlinked 
node: 
 

  LIST.CPP               � 
STATUS Remove (NODE* &head, const apstring &city) 
 
// Removes "city" from the list. 
// Returns OK if successful, FAILED if not found. 
 
{ 
    NODE *node, *prev; 
 
    // 1. Find and unlink the node: 
 
    //    1.1. Find the node to remove.  Keep track of 
    //           the previous node: 
 
    prev = 0; 
    node = head; 
 
    while (node && node–>city != city) { 
        prev = node; 
        node = node–>next; 
    } 
 
    if (!node) 
        return FAILED;     // The target value not found in the list. 
 
    //    1.2. Unlink the node: 
 
    if (prev) 
        prev–>next = node–>next; 
    else 
        head = node–>next; 
 
    // 2. Deallocate the node and release its memory: 
 
    delete node; 
 
    return OK; 
} 

 
Note that head is passed by reference because it may change.  The “unlinking” 
action is illustrated in Figure 17-5. 
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  // Find the node:
  while (node && node->data != data) {
      prev = node;
      node = node–>next;
  }

  // Unlink the node:
  if (prev)
      prev->next = node->next;
  else
      head = node->next;

 
 

Figure 17-5.   Removing a node from a linked list 
 

17.7 Lab: Maintaining a List 
 
Write a menu-driven interactive program that maintains a linked list of names in 
alphabetical order.  The program first loads the list from a file.  It provides menu 
commands to display the list, insert or remove a name, and save the list in a file.  
The program destroys the list at the end. 
 
You can adapt the menu-handling code from the “Inventory” program (Part 1, 
Section 8.3).  You already have most of the linked list declarations and functions 
that you will need: 
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  LIST.CPP               � 
struct NODE { 
    apstring city; 
    NODE *next; 
}; 
 
enum STATUS {FAILED, OK}; 
 
// Function prototypes: 
 
STATUS LoadList (NODE* &head, const apstring &fileName); 
void DisplayList (NODE *head); 
STATUS Insert (NODE* &head, const apstring &city); 
STATUS InsertInOrder (NODE* &head, const apstring &city); 
STATUS Remove (NODE* &head, const apstring &city); 
void DestroyList (NODE *head); 

 
Test your program, paying special attention to singular situations such as first and 
last nodes and empty lists. 
 
 For “extra credit”: 
 
1. Add the function: 
 
 STATUS SaveList (NODE *head, const apstring &fileName); 
 
2. Note that InsertInOrder(…) lets you insert a name which is already on the 

list.  This creates duplicates on the list.  Modify the Remove(…) function so 
that it removes (in one pass through the list) all the nodes that contain a 
matching name. 

 

17.8 Linked Lists vs. Arrays 
 
In Section 17.1, we talked about the “List” ADT, which represents a collection of 
elements and functions that insert, remove, and find an element.  As we have seen, 
the “List” ADT can be implemented as either an array or a linked list.  Each of 
these implementations of the “List” ADT has its advantages and limitations, 
particularly for more specialized ADTs based on the “List” ADT. 
 
The array implementation provides direct access to the n-th element of the array.  
This property, called random access, is important in many algorithms.  For 
example, we saw that binary search, a very efficient algorithm for finding a value 
in a list, applies to a sorted array (an array whose values are arranged in ascending 
or descending order).  Binary search requires access to the element directly in the 
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middle between two elements, which is easy with arrays but inefficient with linked 
lists.  Later, in Chapter 26, we will see how the random access property of arrays is 
used in calculating distributions of values, in look-up tables, and in hash tables.  
An array also provides sequential access to its elements — we can traverse an 
array both from beginning to end and backwards. 
 
Arrays have two drawbacks, however.  First, it is not easy to insert or remove an 
element at the beginning or in the middle of an array — a lot of bytes may need to 
be moved if the array is large.  Second, we do not always know in advance the 
exact number of elements an array needs to store.  We have to declare an array that 
will hold the maximum possible number of elements, and resize it later.  
 
Linked lists get around both of these problems.  First, an element can be easily 
inserted or removed from a linked list simply by rearranging the pointers.  This is a 
crucial property if we have a frequently updated list containing large structures or 
records.  Second, the nodes of a linked list are dynamically allocated only when 
new elements are added, so no memory is wasted for vacant nodes.  (On the other 
hand, a linked list takes some extra memory to store pointers to nodes.) 
 

17.9 Linked Lists with a Tail and Doubly 
Linked Lists 

 
In some applications we may need to insert elements at the end of the list.  In a 
queue data structure, for example, we insert elements at the “tail” of the list and 
remove elements from the head of the list.  In an ordinary linked list, we have to 
traverse the whole list to find its tail.  We can make insertion at the end of the list 
much more efficient by maintaining an additional pointer to the last node of the 
list. 
 
A linked list with an additional pointer to its tail is defined by two pointers: head 
and tail.  For an empty list, both pointers are set to null.  The Insert(…) and 
Remove(…) functions must update both head and tail pointers when necessary.  
For example: 
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STATUS Insert (NODE* &head, NODE* &tail, const apstring &city) 
 
// Inserts city at the "tail" of the list. 
 
{ 
    ... 
    // Link newnode to the tail of the list: 
    if (tail) 
        tail–>next = newnode; 
    else                     // ...if list was empty... 
        head = newnode; 
 
    tail = newnode;          // Update tail. 
 
    return OK; 
} 
 
STATUS Remove (NODE* &head, NODE* &tail, const apstring &city) 
 
// Removes city from the list. 
 
{ 
    ... 
    // Unlink node from list: 
    if (prev)                // As before... 
        prev–>next = node–>next; 
    else 
        head = node–>next; 
    if (node == tail)        // Update tail, if removing 
        tail = prev;         //   the last node. 
 
    delete node; 
 
    return OK; 
} 

 
It is better to combine head and tail in one structure.  For example: 
 
struct LIST { 
    NODE *head; 
    NODE *tail; 
}; 
... 
LIST list = {0,0};  // Empty list 
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... 
STATUS Insert (LIST &list, const apstring &city) 
 
// Inserts city at the "tail" of "list". 
 
{ 
    ... 
    // Link newnode to the tail of the list: 
    if (list.tail) 
        list.tail–>next = newnode; 
    ... 
} 

a a a 

Another variation on the linked list is the doubly linked list.  In a doubly linked 
list, each node contains a pointer to the previous node as well as a pointer to the 
next node.  The list is defined by two pointers, head and tail (Figure 17-6). 
 

 data data

 data data

 head

 tail

 
 

Figure 17-6.   A doubly linked list 
 
 
A doubly linked list of city names can be defined as follows: 
 
struct NODE { 
    apstring city; 
    NODE *prev; 
    NODE *next; 
}; 
 
struct LIST { 
     NODE *head; 
     NODE *tail; 
}; 

 
list.head–>prev and list.tail–>next are always null. 
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We can traverse a doubly linked list both forward and backward.  For example: 
 
    // Traverse doubly linked list in reverse order: 
    for (node = list.tail;   node;   node = node–>prev) { 
        ... 
    } 

 
When you insert or remove a node from a doubly linked list, there is no need to 
keep track of a pointer to the previous node because this pointer is available from 
the current node: 
 
    prev = node–>prev; 

 

17.10 Lab: Doubly Linked List 
 
Rewrite your “Maintaining a List” program from Section 17.7 using a doubly 
linked list. 
 
Sometimes, when you program doubly linked lists, your code may set all the 
forward pointers correctly but leave the reverse pointers dangling or set 
incorrectly.  A bug of this type may not immediately manifest itself in the program.  
Add a new function: 
 
void DisplayListReverse(const LIST &list) 

 
which will traverse the list backward, and add a corresponding command to the 
menu.  This function will help you test the integrity of the reverse pointers in the 
list. 
 
 For “extra credit”: 
 
Write a function that matches a string of characters against a “pattern.”  A pattern 
is a string that may contain “wildcard” characters (e.g., '?').   A wildcard character 
matches any character in the corresponding position.  For example, “New York,” 
“New Haven,” and “Newark” all match the pattern “New???????????”. 
 
Now write a function: 
 
void MoveToTop(LIST &list, const apstring &pattern); 

 
that will move all the nodes that match a given pattern to the top (beginning) of the 
list.  The function should perform the operation in one traversal of the list and 
should keep the moved nodes in the same order (so that if “New Haven” was 
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above “New York” and both were moved to the top of the list, “New Haven” 
would remain above.)  Add a corresponding menu command and devise a 
comprehensive test for your function, including situations when there is no match 
or only one match, when the matching names include the first or the last node of 
the list, and so on. 
 

17.11 Summary 
 
A data structure is a method of data organization that includes methods of 
accessing and manipulating the data.  An abstract description of a data structure 
with the emphasis on its properties, functionality, and use rather than on a specific 
implementation is called an Abstract Data Type (ADT).  An ADT defines an 
interface (set of access methods) to an abstract data organization without 
specifying the details of its implementation. 
 
A “List” ADT, for example, may be specified as a collection of elements and 
functions to create an empty list, insert and remove elements, and destroy the list.  
The “List” ADT may serve as a basis for more specialized ADTs such as the 
“Ordered List” ADT, the “Queue” ADT, and so on. 
 
The “List” ADT can be implemented as an array or as a linked list.  The array 
implementation has the random access property (i.e., it provides direct access to 
the n-th element of the array), which is important in many algorithms (e.g., binary 
search).  But insertion and removal of elements at the beginning or in the middle of 
an array may be inefficient. 
 
In a linked list, each node contains some information and a pointer to the next 
node.  We access the list through a pointer to its first node.  The last node's pointer 
is set to null.  A new node can be inserted or removed easily by rearranging the 
pointers.  The nodes of a linked list are dynamically allocated only when new 
elements are added, so no memory is wasted for vacant nodes.  A linked list does 
not provide random access to its elements. 
 
A procedure which accesses and processes all the elements of a data structure in 
sequence is called a traversal.  The following for loop is a convenient expression 
for traversing a linked list: 
 
    NODE *node; 
    ... 
    for (node = head;   node;   node = node–>next) { 
        ...  // Process the list element pointed to by "node" 
    } 
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When a linked list is created in a program, we usually start with an empty list 
designated by a null pointer: 
 
    NODE *head = 0; 

 
A variation of a linked list structure — the linked list with an additional pointer to 
the last node (tail) of the list — is convenient for implementing lists where 
elements are added at the tail of the list, as in the “Queue” ADT.  In another 
variation, the doubly linked list, each node contains two pointers — one to the next 
node and one to the previous node.  We can traverse a doubly linked list in both 
directions, forward and backward. 
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18.1 Discussion 
 
The stack is a data structure used for storing and retrieving data elements.  The 
stack provides temporary storage in such a way that the element stored last will be 
retrieved first.  This method is sometimes called LIFO — Last-In-First-Out (as 
opposed to the FIFO, or First-In-First-Out, method of a queue).  In terms of 
abstract data types, the “Stack” ADT may be viewed as a specialization of the 
“List” ADT that implements the LIFO access method. 
 
A stack usually holds elements of the same size, such as integers, doubles, 
or some records.  The elements are said to be on the stack.  The stack is 
controlled by two operations which are referred to as push and pop.  Push 
adds an element to the top of the stack and pop removes the element from 
the top of the stack.  These two operations implement the LIFO method. 

 
A stack can be set up in different ways.  One possible implementation uses an 
array and an integer index, called the stack pointer, which marks the current top of 
the stack.  The stack usually grows toward the end of the array; the stack pointer is 
incremented when a new element is pushed onto the stack and decremented when 
an element is popped from the stack.  In some implementations the stack pointer 
points to the top element of the stack, but many C++ programmers find it more 
convenient to point to the next available vacant slot on the stack.  Figure 18-1 
illustrates the latter implementation. 
 
 

  ...                  Stack
buffer[6]                       pointer:
buffer[5]                      SP
buffer[4]    Item 5
buffer[3]    Item 4
buffer[2]    Item 3
buffer[1]    Item 2
buffer[0]    Item 1

 
 

Figure 18-1.   Stack Pointer points to the next vacant slot on the stack 
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Another possible stack implementation uses a singly-linked list with elements 
added and removed at the head of the list.  This implementation is more 
appropriate when the data elements are large records and the maximum size of the 
stack cannot be determined in advance.  In this implementation, storage for the 
elements pushed onto the stack is dynamically allocated using the new operator 
and released with the delete operator after an element is popped from the stack 
and its copy returned to the calling function. 
 
The stack mechanism is useful for temporary storage, especially for 
dealing with nested structures or processes: expressions within 
expressions, functions calling other functions,  directories within 
directories, etc.  The stack mechanism helps your program to untangle 
the nested structure and trace all its substructures in the correct order. 

 
The C++ compiler itself provides an example of effective stack use when it 
processes #include statements.  The compiler must read all lines of code in the 
correct order, so when it encounters an #include line, it has to save the current 
location in the current file and branch off to process the included file.  But the 
included file itself may have another  #include, and we need to save that 
location, too, and branch off again.  If we save it in the same place, the first 
location will be overwritten.  That's where a stack becomes indispensable.  Each 
time we encounter another #include,  we push the current file location on the 
stack and branch off to process the included file.  When we are done with the file, 
we pop the saved location from the stack and resume processing.  The process 
allows us to handle #include statements nested to any depth, limited only by the 
stack’s size.  The procedure terminates when we have finished reading the current 
file and the stack is empty.  The empty stack indicates that we are back at the top 
level of the initial file. 
 

18.2 Array Implementation of Stack 
 
In this section we will implement a stack using the array method.  Let us write a 
simplified class that implements a stack of integers; a more general templated class 
that works with all data types, apstack, is discussed in the next section. 
 
We begin by defining the class in the header file STACK.H: 
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 STACK.H                � 
// STACK.H 
// 
// Stack of integers implemented as an array. 
// 
 
#ifndef _STACK_H_ 
#define _STACK_H_ 
 
class STACK { 
 
  private: 
 
    int mSize; 
    int mSp; 
    int *mBuffer; 
 
  public: 
 
    STACK(int size = 100); // Constructor; default size is 100 elements 
    ~STACK(); 
    void push(int item); 
    void pop(int &item); 
    bool isEmpty(); 
}; 
 
#endif   // _STACK_H_ 

 
 
The mSize element contains the maximum stack size, and mSp is the stack pointer.  
Note that mBuffer is not an array but just a pointer to an integer array.  The actual 
array of the specified size is allocated in the constructor and released in the 
destructor.  This is similar to the implementation of the apvector class. 
 
The stack class member functions are coded in STACK.CPP: 
 

  STACK.CPP           � 
// STACK.CPP 
// 
// Stack of integers implemented as an array. 
// 
 
#include "stack.h" 
 

Continued    ® 
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STACK::STACK(int size) 
 
// Constructor: creates a stack of the specified size. 
// (If fails, the size is set to 0.) 
 
{ 
    mBuffer = new int[size]; 
    if (!mBuffer) 
        mSize = 0; 
    else 
        mSize = size; 
    mSp = 0; 
} 
 
//**************************************************************** 
 
void STACK::push(int item) 
 
{ 
    if (mSp < mSize) { 
        mBuffer[mSp] = item;  // Or, simply: 
        mSp++;                //   mBuffer[mSp++] = item; 
    } 
} 
 
//**************************************************************** 
 
void STACK::pop(int &item) 
 
{ 
    if (mSp > 0) { 
        mSp––;                // Or, simply: 
        item = mBuffer[mSp];  //   item = mBuffer[––mSp]; 
    } 
} 
 
//**************************************************************** 
 
bool STACK::isEmpty() 
 
{ 
    return mSp == 0; 
} 
 
//**************************************************************** 
 
STACK::~STACK()              
 
// Destructor: frees buffer. 
 
{ 
    delete [] mBuffer; 
} 
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Normally the code for a general-purpose stack class would report errors such as 
trying to pop an item from an empty stack or push an item on a full stack.  For 
instance, instead of void  push(…) and pop(…) we could make them return a 
Boolean value that would indicate success or failure.  We have decided not to do 
this because push and pop  functions are void in the apstack class discussed in 
the following section. 
 

18.3 The apstack Class 
 
The apstack class is a templated class provided by the AP C++ Development 
Committee.  It is patterned after the stack class from the STL (Standard Template 
Library). 
 
The class implements the stack as an array in a manner very similar to the example 
from the previous section.  But the apstack class can handle stack elements of 
any data type, not just integers.  A stack of doubles, for example, can be declared 
as: 
 
    apstack<double> stack; 
 

The apstack class automatically handles the size of the stack.  There is no way to 
specify the desired size in the declaration.   The constructor first allocates a small 
buffer for the stack elements; later the push(…) function may allocate a bigger 
buffer if the stack runs out of space.  The most commonly used member functions 
are: 
 
    void push(const itemType &item); 
    void pop(itemType &item); 
    bool isEmpty(); 

 
The class has other member functions: 
 
    const itemType &top() const; 
         // Returns the top element without removing it from the stack 
 
    void pop(); 
         // Overloaded version of pop(…) that removes the top element 
         //   from the stack and discards it 
 
    int length() const; 
         // Returns the number of elements on stack. 
 
    void makeEmpty(); 
         // Empties the stack 
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18.4 Case Study and Lab: Music 
 
Tunes and songs often have repeating fragments.  In a computer representation of a 
musical score it would be convenient to incorporate commands to replay specified 
fragments.  In this section we will write a program that “plays” a tune with 
“repeat” commands.  The repeating fragments may be nested to any depth, so that 
a fragment that is being replayed may contain another “repeat” command.  
Naturally, our program will use a stack to properly untangle the hierarchy of 
repeating fragments. 
 
Since different hardware platforms may have different capabilities and software 
support for making sound, playing the actual music is left to those readers who 
want to learn how that is done on their particular system.  Here, instead of 
representing a musical score and playing music, we will simply display the lyrics 
of songs.  Consider a text file which, in addition to lines of text, may have “repeat” 
commands.  A repeat command is a line in the file that has the following format: 
 
#repeat fromLine toLine 

 
where fromLine and toLine are two integers that represent the line numbers for the 
beginning and the ending line of the fragment to be repeated.  For instance, the 
Beatles’ Hello, Goodbye may be written as follows: 
 

  SONG.TXT             � 
You say yes             //  1 
I say no                //  2 
You say stop            //  3 
And I say go go go      //  4 
                        //  5 
CHORUS:                 //  6 
Oh no                   //  7 
You say Goodbye         //  8 
And I say hello         //  9 
Hello hello             // 10 
I don't know why        // 11 
You say Goodbye         // 12 
I say hello             // 13 
#repeat 10 13           // 14 
Why                     // 15 
#repeat 12 14           // 16 
                        // 17 

Continued    ® 
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I say high              // 18 
You say low             // 19 
You say why             // 20 
And I say I don't know  // 21 
#repeat 5 16            // 22 

 
 
 
We start numbering lines  from 1 (not 0) and assume that all the line numbers in 
the script are correct and that there are no circular references that would put the 
program into an infinite loop.  The program, with a few gaps, can be found in 
MUSIC.CPP.  The program reads the lines of text from the specified file into an 
array of strings.  It first calls the ShowTextSimple(…) function that displays the 
text as is, without processing #repeat commands.  After that, it calls the 
ShowText(…) function that displays the text with all #repeat commands 
correctly processed. 
 

  MUSIC.CPP            � 
// MUSIC.CPP 
// 
// This program displays the lyrics of a song written in a file 
// with embedded #repeat commands. 
// 
// Author: J. Lennon and P. McCartney 
// 
 
#include <iostream.h> 
#include <fstream.h> 
#include <strstrea.h> 
#include "apstring.h" 
#include "apvector.h"  
#include "apstack.h" 
 
void ShowTextSimple (const apvector<apstring> &text, 
                                       int fromLine, int toLine); 
void Parse (const apstring &line, int &fromLine, int &toLine); 
void ShowText (const apvector<apstring> &text, int fromLine, int toLine); 
                                                                                
//**************************************************************** 
 
int main() 
 
{ 
    const int MAXLINES = 1000; 
    apvector<apstring> text(MAXLINES); 
    apstring fileName; 
    int nLines = 0; 

Continued    ® 
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    // Prompt the user for a file name and open the file. 
    // If no extension given, append the default extension ".txt": 
    cout << "Text file name: "; 
    cin >> fileName; 
    if (fileName.find('.') == npos) 
        fileName += ".txt"; 
 
    ifstream textFile(fileName.c_str()); 
    if (!textFile) { 
        cout << "Cannot open " << fileName << ".\n"; 
        return 1; 
    } 
 
    // Read the lines from the file into an array of strings: 
    while (nLines < MAXLINES && getline(textFile, text[nLines])) 
        nLines++; 
 
    // Show the text "as is": 
    ShowTextSimple(text, 1, nLines); 
 
    cout << "\n************************************\n\n"; 
 
    // Show the text with correctly processed #repeat commands: 
    ShowText(text, 1, nLines);            
 
    return 0; 
} 
 
//**************************************************************** 
 
void ShowTextSimple (const apvector<apstring> &text, 
                                       int fromLine, int toLine) 
 
// Displays lines of text from fromLine to toLine. 
// Lines are numbered starting from 1. 
 
{ 
    while (fromLine <= toLine) { 
        cout << text[fromLine–1] << endl; 
        fromLine++; 
    } 
} 
 
//**************************************************************** 
 

Continued    ® 
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void ShowText (const apvector<apstring> &text, int fromLine, int toLine) 
 
// Displays lines of text from fromLine to toLine. 
// Handles #repeat directives embedded in the text: 
// #repeat fromNum toNum 
//   (the first character in the line must be #; fromNum and toNum 
//    are integers). 
// Lines are numbered starting from 1. 
 
{ 
    apstack<int> stack; 
    apstring line; 
 
    while (fromLine <= toLine || !stack.isEmpty()) { 
        if (fromLine <= toLine) { 
            line = text[fromLine–1]; 
            if (line.length() == 0 || line[0] != '#') { 
                // Regular line 
                cout << line << endl; 
                fromLine++; 
            } 
            else { 
                // #repeat line 
                ... 
                ... 
                Parse(line, fromLine, toLine); 
            } 
        } 
        else { // if (!stack.isEmpty()) 
            ... 
            ... 
        } 
    } 
} 
 
//**************************************************************** 
 
void Parse (const apstring &line, int &fromLine, int &toLine) 
 
// Parses a repeat directive 
// #repeat fromNum toNum 
// extracts fromNnum and toNum and places them into fromLine, toLine. 
 
{ 
    apstring discard; 
    istrstream is( static_cast<char *>(line.c_str()) ); 
         // Creates an input stream associated with the string. 
         // istrstream constructor takes one argument of the char* type. 
         // c_str() converts apstring into const char* 
         // static_cast converts const char* into char* 
 
        is >> discard >> fromLine >> toLine; 
} 
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The ShowText(…) function must handle two situations: a regular line and a 
#repeat line.  In the first case it simply displays the line.  In the second case, it 
saves the current values of the fromLine and toLine variables on stack, gets new 
values from the #repeat line, and continues processing.  When done, the function 
pops the saved values from the stack and continues.  When the current fragment is 
finished and the stack is empty, the function is done. 
 
The Parse(…) function helps to extract the line numbers from a #repeat line.  It 
uses the feature of I/O streams that allows you to associate an input stream with a 
null-terminated character string (see Chapter 12).  This lets the program  read 
individual items from the string the same way it reads from cin. 

a a a 

As a lab exercise, fill in the blanks in the ShowText(…) function.  Don't forget 
that a stack is a LIFO structure, so the saved values must be popped in reverse 
order.  Test your program using your own test files or the provided file SONG.TXT. 
 

For “extra credit”: 
 
Find out how to play musical notes on your computer.  Design a format for storing 
a tune in a file and modify the program to play a tune from a specified file. 
 

18.5 The Hardware Stack 
 
What happens when a function is called?  When function Caller calls function 
Task, how does Task know where to return control after it has finished?  
Obviously Caller has to pass along some return address so that Task can send 
the CPU to that address when it is through.  Let us consider several possible 
locations where that return address can be stored. 
 
The first guess is that it could go to some specially reserved memory location.  
This could work if Task did not call any other functions.  If, however, Task called 
another function, SubTask, then its return address would go into the same memory 
location and overwrite the first return address.  In a more elaborate scheme, the 
return address could go into some special memory area attached to the function 
code, for instance just before the beginning of the function code.  This would solve 
the problem of functions calling other functions, because every function has its 
own storage for the return address.  This is, in fact, how some early models of 
computers worked.  A problem arises, however, if Task is allowed to call itself, or 
when there are circular calls: Task calls SubTask, SubTask calls 



324 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

AnotherSubtask, AnotherSubtask calls Task.  Task gets confused about 
whether to return control to AnotherSubtask or to Caller. 
 
(The notion of a function calling itself may at first seem absurd.  But, as we will 
explain later, such recursive calls are extremely useful for dealing with nested 
structures or branching processes, where substructures or branches are similar to 
the whole.  Recursive functions can greatly simplify algorithms.) 
 
Practically the only solution remaining is a stack.  When Caller calls Task, it 
first pushes the return address on the stack.  When Task has finished, it pops the 
return address from the stack and passes control back to it.  Task can use the stack 
for its own purposes and for calling other functions: the only requirement is that it 
restore the stack pointer to its initial value before returning. 
 
This way, functions can call each other without any conflict.  In particular, a 
function can call itself or functions can call each other in a circular manner.  In 
addition to the return address, though, we have to be careful with the arguments 
and local variables.  If a function in the middle of its course calls itself, what 
becomes of its local variables?  Again, the stack offers the solution.  The function 
arguments and local variables can all reside on the stack.  The stack pointer is 
adjusted to reserve some space for them when the function is called, and the stack 
pointer is restored when the function has finished its processing.  That way we can 
use only one copy of the function code but multiple copies of the function return 
address, arguments, and local variables for every currently active copy of the 
function. The area of the stack that holds all the information for a particular 
function call is called a frame.  Figure 18-2 illustrates the frames created on the 
stack after several function calls.  
 
In modern computers the stack method is supported in hardware.  The hardware 
stack does not require any special memory.  It is implemented simply as a stack 
pointer register which can point to a desired memory location and can be modified 
either directly or by the push and pop CPU instructions. The CPU call 
instruction automatically pushes the address of the next instruction on the stack 
before passing control to a subroutine.  The CPU ret (return) instruction 
automatically pops the return address from the stack and passes control back to 
that address. 
 
When function Caller calls function Task, Caller first pushes the arguments 
that it wants to pass to Task on the stack, then passes control to Task.  Task 
allocates some space on the stack for its own local variables.  When Task has 
finished its job, it wipes out its local variables from the stack.  Either the caller or 
the called function, depending on the convention, performs the final clean-up by 
removing the arguments from the stack. 
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When arguments are passed by value, the value of the argument is pushed on stack.  
That is why it’s not a good idea to pass large structures by value.  When an 
argument is passed by reference, only its address is pushed on stack. 

a a a 

 
 
                                                                 System 
                                                                  Stack: 
 
 
 
                                                SP 
 

... 
 
 int main() 
 
 { 
    int x, y; 
    ... 
    Task(7,11) 
    ... 
 } 
 
//********************* 
 
 void Task(int a, int b) 
 
 { 
    int i, j; 
    ... 
    SubTask(i+1); 
    ... 
 } 
 
//********************* 
 
 void SubTask(int n) 
 
 { 
    int z; 
    ... 
    ... 
 } 
   

 

    z 
 
  addr B 
 
  n = i+1 
 
     j 
 
     i 
 
  addr A 
 
   b = 11 
 
   a = 7 
 
     y 
 
     x 
 
  addr ... 

A snapshot of the system stack is 
taken at this point  in the program 
at run time. 

 Frame for "main": 
   Return address back to 
     the C++ initialization 
     module. 
   Local vars   x, y. 

Frame for "Task": 
   Arguments: 7, 11. 
   Return address. 
   Local vars  i, j. 
 

 Frame for 
       "SubTask": 
   Argument: value 
      of  n = i+1. 
   Return address. 
   Local var  z. 

addr A 

addr B 

 
 

Figure 18-2.   Frames on the system stack after a few function calls 
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The hardware stack is also used for saving the system state when it is interrupted 
by an external event.  Pressing any key on the keyboard, for example,  generates a 
hardware interrupt, a situation that needs the CPU’s immediate attention.  When 
this happens, the address of the current CPU instruction is pushed on stack and 
control is passed to the special interrupt handling routine.  This routine pushes all 
CPU registers on stack to save the current state.  Then it receives and processes the 
pressed key and places its code into the keyboard buffer for later use by the 
running application.  After that the keyboard routine pops all the registers from the 
stack (in reverse order) and  returns control to the interrupted program.  The stack 
helps to handle nested interrupts (when one interrupt comes in the middle of 
processing another interrupt) properly.  (People often use a similar method when 
their tasks or conversations are interrupted.) 
 

18.6 Summary 
 
The stack is a data structure used for storing and retrieving data elements.  A stack 
usually holds elements of the same size, such as integers, doubles, or some records.  
The elements are said to be “on the stack.”  The stack is controlled by two 
operations referred to as push and pop.  Push adds an element to the top of the 
stack and pop removes the element from the top of the stack.  These two operations 
implement the LIFO (Last-In-First-Out) data access method. 
 
One possible implementation of a stack uses an array and an integer index, called 
the stack pointer, which marks the current top of the stack.  The stack usually 
grows toward the end of the array; the stack pointer is incremented when a new 
element is pushed onto the stack and decremented when an element is popped from 
the stack. 
 
The stack mechanism is useful for temporary storage, especially for dealing with 
nested structures or processes: it allows your program to untangle the nested 
structure and trace all its substructures in the correct order. 
 
The templated apstack class implements a stack for elements of any data type.  
The most commonly used member functions are push(…), pop(…) and 
isEmpty(): 
 
    apstack<int> stack; 
    int item; 
 
    stack.push(item); 
    stack.pop(item); 
    while (!stack.isEmpty())... 
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19.1 Discussion 
 
According to one of Euclid's axioms, “The whole is greater than the part.”  This 
may be true for the lengths of segments and the volumes of solids in geometry, but 
in the intangible world of computer software the whole is sometimes the same as 
the part, at least in terms of its structural description and use.  Which is “greater,” 
for example, a directory or a subdirectory in a tree-structured computer file 
system?  A particular directory is “greater” than its subdirectories, because overall 
it contains more files (counting the files in all its subdirectories), than any 
subdirectory.  But a directory is “the same” as its subdirectories, because any 
subdirectory is a directory.  It holds its own files and its own subdirectories, and its 
structure and use are the same. 
 
In another example, a C++ source file may have other C++ source files included in 
it by means of #include statements.  The overall number of lines in the file and 
all included files together is larger than in any included file.  But the structure of 
any included file is the same, because it is itself a source file, and it may have its 
own #include statements. 
 
The above instances are examples of recursive structures whose substructures have 
the same form as the whole.  Such structures are best handled by recursive 
procedures, which operate the same way on a substructure as on the whole 
structure.  In computer software, recursive procedures and processes can be 
conveniently implemented by means of recursive functions whose code includes 
calls to themselves.  We saw in Section 18.5 that in a modern computer system the 
same mechanism implements a function call whether the function calls itself or 
another function.  All function arguments, the return address, and the local 
variables are kept in a separate frame on the system stack, so that several functions, 
including several copies of the same function, can be waiting for the control to be 
returned to them without any conflict.  Multiple copies of the same function all 
share the same code (set of CPU instructions) but operate on different data. 
 
It is no coincidence, then, that recursive structures and processes are especially 
common in the computer world.  It is easier to implement and use a structure or a 
process when its substructures and subprocesses have the same form.  The same 
function, for example, can deal with a directory and subdirectories, a file and 
included files. 
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Recursion is not specific to C++: it works the same way with any language that 
allows functions to call themselves. 
 

19.2 Examples of Recursive Functions 
 
Let us consider two sketches of recursive functions based on the above discussion. 
(We will ignore minor implementation details.) 
 
In the first example, the function TotalDirectorySize(…) calculates the sum 
of the sizes of all files in a directory and all its subdirectories (Figure 19-1).  The 
directory can be represented in memory as some structure DIR, for instance a 
linked list of items with their attributes.  Each item can be either a file or a 
subdirectory. 
 

     Directory
                  File    324 bytes

                  Directory
                                        Directory
                  File  15612 bytes
                                        File  77121 bytes
                  File   1077 bytes
                                        File  16001 bytes
                  File    109 bytes

                  Directory

                  File  67836 bytes
                                        File   2424 bytes

                                        File   1300 bytes

                                        File   1019 bytes

                                        File  64000 bytes
 

 
Figure 19-1.   A tree-structured directory of files 
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long TotalDirectorySize(const apstring &directoryName) 
 
{ 
    long  sum = 0; 
 
    <... Open and load directory (directoryName)>; 
 
    for (... <all items in the directory>) { 
        if (... <current item is a file>) 
            sum += ... < size of this file>; 
        else if (... <current item is a subdirectory>) { 
            //  *** Recursive call to TotalDirectorySize *** 
            sum += TotalDirectorySize(... <subdirectory name>); 
        } 
    } 
 
    <... Close directory and remove from memory> 
 
    return sum; 
} 

 
The TotalDirectorySize(…) function keeps calling itself until it reaches the 
bottom level in the directory hierarchy, where a subdirectory does not have any 
more subdirectories.  Since the directories are nested only to some finite depth, the 
processing will eventually return to the top level and the function will successfully 
finish its work. 
 
In the second example, the function FindString(…) finds and prints out all lines 
that contain the specified string in a source file and in all #include-ed files: 
 
#include <iostream.h> 
#include <fstream.h> 
#include "apstring.h" 
 
extern bool IncludeLine(const apstring &line); 
extern void ExtractName(const apstring &line, apstring &name); 
 
void FindString (const apstring &fileName, const apstring &target) 
 
{ 
    apstring line; 
    apstring inclFileName; 
 
    // Open file: 
 
    ifstream inpFile(fileName); 
    if (!inpFile) 
        return; 

Continued    ® 
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    // For all lines in the file: 
 
    while (getline(inpFile, line)) { 
        if (!IncludeLine(line)) {     // Not an "#include" line 
            if (line.find(target) != npos) 
                cout << fileName << ":\n" << line << endl; 
        } 
        else {                       // "#include" line 
            // Extract include file name from line into inclFileName 
            ExtractName(line, inclFileName); 
 
            // *** Recursive call to FindString *** 
            FindString(inclFileName, target); 
        } 
    } 
} 

 
This is how FindString(…) can be called from the main program: 
 
int main() 
 
{ 
    apstring fileName, str; 
 
    cout << "Filename ==> "; 
    cin >> filename; 
    cout << "Target string ==> "; 
    cin >> str; 
    FindString(fileName, str); 
 
    return 0; 
} 

 
The above examples demonstrate how compact the recursive implementation of a 
function can be.  As discussed in Chapter 18, both TotalDirectorySize(…) 
and FindString(…) could be implemented with your own stack instead of 
recursion.  You would have to push the current position in the hierarchy on stack, 
process all the lower levels, then pop the saved position from the stack and 
continue.  The code would be longer and harder to understand.  Recursive calls 
actually do a similar thing, but they automate the process for you by using the 
system stack.  

a a a 

In the following example we rewrite the ShowText(…) function from Section 18.4 
with recursion instead of a stack.  The ShowText(…) function now simply cycles 
through all the lines: when it finds a regular line it displays it; when it finds a 
#repeat command, it calls itself recursively: 
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// MUSIC.CPP 
... 
void ShowText (const apvector<apstring> &text, int fromLine, int toLine) 
 
// Displays lines of text from fromLine to toLine. 
// Handles #repeat directives embedded in the text: 
// #repeat fromNum toNum 
//   (the first character in the line must be #; fromNum and toNum 
//    are integers). 
// Lines are numbered starting from 1. 
 
{ 
    apstring line; 
    int fromNum, toNum; 
 
    while (fromLine <= toLine) { 
        line = text[fromLine–1]; 
        if (line.length() == 0 || line[0] != '#') { 
            // Regular line 
            cout << line << endl; 
        } 
        else { 
            // #repeat line 
            Parse(line, fromNum, toNum); 
            ShowText(text, fromNum, toNum); 
        } 
        fromLine++; 
    } 
} 
 

With recursion, this function is almost as simple as ShowTextSimple(…)! 
 

19.3 Base Case and Recursive Case 
 
In all of the above examples, recursion helped us deal with some nested structures.  
In the last program, for example, we processed nested fragments of text.  For each 
line of text there were two possibilities: it could be a regular line (a base case) or it 
could be a repeat command (a recursive case).  In the base case there is no need to 
call the function recursively.  Since structures can be nested only to some finite 
depth, the process eventually reaches the lowest level where only base case 
processing remains.  Then no more recursive calls are made. 
 
In some recursive functions, the base case is separated from the recursive case in a 
more explicit way.  Let us consider an example of a recursive function where the 
process is branching and recursive in nature although there are no nested 
structures.  Suppose we are building a computer word game that tries to make a 
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valid word out of a given set of letters.  The program will require a function that 
generates all permutations of the letters and matches them against a dictionary of 
words.  The set of letters will be represented as a string of length n.  Our strategy 
for generating all permutations is to place each element in turn in the last place in 
the array, then generate all permutations of the first (n–1) elements.  In other 
words, the Permutations(…) function will be recursive.  The function takes two 
arguments: the string and the number n of characters in the leading fragment that 
have to be permutated.  The base case is when n is equal to 1 — there is nothing to 
do except to report the permutation. 
 
The function below is quite short and readable; still, it is hard to grasp why it 
works!  We will return to it in Section 19.5, which explains the best way of 
understanding and debugging recursive functions.  
 
inline void Swap (char &a, char &b){char temp = a; a = b; b = temp;} 
 
void Permutations (apstring &str, int n) 
 
{ 
    if (n <= 1);    // Base case: 
                    // The permutation is completed –– report it 
            cout << str << endl;           // (e.g., print it out) 
 
    else {          // Recursive case: 
        for (int i = 0;    i < n;   i++) { 
            Swap (str[i], str[n–1]);    
            Permutations(str, n–1); 
            Swap (str[n–1], str[i]); 
        } 
    } 
} 

 

19.4 When Not to Use Recursion 
 
Any recursive function can be also implemented through iterations, using a stack if 
necessary.  This poses a question: When is recursion appropriate, and when is it 
better avoided? 
 
There are some technical considerations that may restrict the use of recursive 
functions: 
 
1. If a function declares large local arrays, each frame on the system stack will be 

large, and the stack may overflow after a few recursive calls.  A programmer 
may rather implement her own stack and save only the relevant variables there, 
leaving out any shared arrays. 
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2. When a function manipulates static or global variables or arrays, the recursive 

call may change their values in an unpredictable way unless the manipulation 
is done on purpose and thoroughly understood. 

 
3. If performance is important, a function implemented without recursion may 

work faster. 
 
But the most important rule is that recursion should be used only when it 
significantly simplifies the code without excessive performance loss.  Recursion is 
especially useful for dealing with nested structures or branching processes.  One 
typical example is algorithms for traversing tree structures, which are described in 
Chapter 22.  On the other hand, when you are dealing with linear structures and 
processes, normally you can use simple iterations.  The following test will help 
you to decide when to use recursion and when iterations.  If the function calls itself 
more than once or if the recursive call is within a loop, it is justified to use 
recursion.  If the function calls itself only once, you can probably do the same 
thing just as easily with iterations. 
 
As an example, let us consider the Factorial(n) function, which calculates the 
product of all numbers from 1 to n.  This function has a simple recursive form: 
 
long Factorial (int n) 
 
{ 
    if (n <= 1) // Base case: 
        return 1; 
    else        // Recursive case: 
        return n * Factorial(n–1); 
} 

 
Our test shows that Factorial's code has only one recursive call.  We are dealing 
with a linear process.  It should be as easy to do the same thing with iterations, thus 
avoiding the overhead of recursive function calls: 
 
long Factorial (int n) 
 
{ 
    long factorial = n; 
 
    while (n > 1) { 
        n––; 
        factorial *= n; 
    } 
    return factorial; 
} 
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Both versions are acceptable, because the performance loss in the recursive version 
is small for small n, and the factorial of large n is far too large, anyway. 
 
A more pernicious example is offered by the famous Fibonacci Numbers.  These 
are defined as a sequence where the first two numbers are equal to one, with each 
consecutive number equal to the sum of the two preceding numbers: 
 
 1, 1, 2, 3, 5, 8, 13, ... 
 
Mathematically this is a recursive definition: 
 
      F1 = 1;  F2 = 1; 
      Fn = Fn–1 + Fn–2  (for n > 2). 
 
It can be easily converted into a recursive function: 
 
long Fibonacci(int n) 
 
{ 
    if (n <= 2)    // Base case: 
        return 1; 
    else           // Recursive case: 
        return Fibonacci(n–1) + Fibonacci(n–2); 
} 

 
It may seem, at first, that this function meets our test of having more than one 
recursive call to Fibonacci.  But in fact, there is no branching here: Fibonacci 
simply recalls two previous members in the same linear sequence.  Don't be misled 
by the innocent look of this code.  The first term, Fibonacci(n–1), will 
recursively call Fibonacci(n–2) and Fibonacci(n–3). The second term, 
Fibonacci(n–2), will call (again) Fibonacci(n–3) and Fibonacci(n–4).  
The Fibonacci(…) calls will start multiplying like rabbits.  To calculate the n-th 
member of the Fibonacci sequence, Fn, Fibonacci(…) will actually make more 
than Fn recursive calls, which, as we will see in the following section, may be quite 
a large number. 
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On the other hand, the same function implemented iteratively will need only n 
iterations: 
 
long Fibonacci(int n) 
 
{ 
    long f1 = 1, f2 = 1, next; 
 
    while (n > 2) { 
        next = f1 + f2; 
        f1 = f2; 
        f2 = next; 
        n––; 
    } 
    return f2; 
} 

 
For our final example of when recursion is not appropriate, let us consider the 
selection sort algorithm for sorting an array of n elements in ascending order.  The 
idea is to find the largest element and swap it with the last element, then apply the 
same method to the array of the first n–1 elements.  This can be done recursively: 
 
void SelectionSort(apvector<int> &v, int n) 
 
{ 
    int i, iMax, vTemp; 
 
    if (n == 1)     // Base case: array of length 1 –– nothing to do 
        return; 
 
    else { 
 
        // Find the index of the largest element: 
        for (iMax = 0, i = 1;   i < n;   i++) 
            if (v[iMax] < v[i]) iMax = i; 
 
        // Swap it with the last element: 
        vTemp = v[n–1]; v[n–1] = v[iMax]; v[iMax] = vTemp; 
 
        // Call SelectionSort for the first n–1 elements: 
        SelectionSort(v, n–1); 
    } 
} 

 
This is a case of so-called tail recursion, where the recursive call is the last 
statement in the function: only the return from the function is executed after that 
call.  Therefore, by the time of the recursive call, the local variables (except the 
arguments passed to the call) are no longer needed.  Instead of recursion we can 
just update the argument(s) and send control back to the beginning of the function: 
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void SelectionSort(apvector<int> &v, int n) 
 
{ 
  start: 
    if (n == 1)     // Base case: nothing to do 
        return; 
    else { 
        ... 
        ... 
        // Do SelectionSort for the first n–1 elements: 
        n = n – 1; 
        goto start; 
    } 
} 

 
Or, if we get rid of goto and replace it with a while loop, we come to the same 
iterative code as we saw in Part 1 (Section 9.2): 
 
void SelectionSort(apvector<int> &v, int n) 
 
{ 
    int i, iMax, vTemp; 
 
    while (n > 1) { 
 
        // Find the index of the largest element: 
        for (iMax = 0, i = 1;   i < n;   i++) 
            if (v[iMax] < v[i]) iMax = i; 
 
        // Swap it with the last element: 
        vTemp = v[n–1]; v[n–1] = v[iMax]; v[iMax] = vTemp; 
 
        n––; 
    } 
} 

 
To quote the inventor of Pascal, Niklaus Wirth, 

 
In fact, the explanation of the concept of recursive algorithm by such 
inappropriate examples has been a chief cause of creating widespread 
apprehension and antipathy toward the use of recursion in programming, and of 
equating recursion with inefficiency.* 

  

                                                      
* Niklaus Wirth, Algorithms + Data Structures = Programs, Prentice Hall, 1976. 
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19.5 Understanding and Debugging Recursive 
Functions 

 
A common way of understanding and debugging non-recursive functions is to 
trace, either mentally or with a debugger, the sequence of statements and function 
calls in the code.  Programmers may also insert some debugging print statements 
that will report to them the function’s progress and the intermediate values of 
variables. 
 
These conventional methods are very hard to apply to recursive functions, because 
it is difficult to keep track of your current location in the hierarchy of recursive 
calls.  Getting to the bottom of the recursive process requires a detailed 
examination of the system stack — a tedious and useless process.  Instead of such 
futile attempts, recursive functions can be more easily understood and analyzed 
with the help of a method known as mathematical induction. 
 
In a nutshell, mathematical induction works as follows.  Suppose we have a series 
of statements 
 
    P0, P1, P2, ... , Pn, ... 
 
Suppose that: 
 
1. We can show that P0 is true (the base case); 
2. We can prove that, for any n ≥ 1, if Pn–1 is true (induction hypothesis), then Pn 

is also true. 
 
Then, if both conditions are met, we can conclude that all statements in the series 
are true.   
 
This is so because P0 implies P1, P1 implies P2, and so on.  However, we do not 
have to go through the entire logical sequence for every step.  Instead, we can take 
a shortcut and just say that all the statements are true by mathematical induction. 

a a a 

As an exercise in mathematical induction, let us estimate the running time for the 
recursive Fibonacci function discussed in the previous section: 
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long Fibonacci(int n) 
 
{ 
    if (n <= 2)    // Base case: 
        return 1; 
    else           // Recursive case: 
        return Fibonacci(n–1) + Fibonacci(n–2); 
} 

 
We will prove that Fibonacci(n) requires not less than (3/2)n–2 calls to the 
function. This is true for n = 1 and n = 2 (base cases), which both require just one 
call: 
 
    n=1:  1 > (3/2)1–2 = (3/2)–1  = 2/3; 
    n=2:  1 = (3/2)2–2 = (3/2)0 
 
For any n > 2, in addition to the initial call, the function calls Fibonacci(n–1) 
and Fibonacci(n–2).  From the induction hypothesis the number of calls for 
Fibonacci(n–1) is not less than (3/2)n–3 and the number of calls for 
Fibonacci(n–2) is not less than (3/2)n–4.  So the total number of calls for 
Fibonacci(n) is not less than: 
 
     1 + (3/2)n–3 + (3/2)n–4   >  (3/2)n–3 + (3/2)n–4  = (3/2)n–4 (3/2 + 1) = 
 
     (3/2)n–4 ⋅ (5/2)  >  (3/2)n–4 ⋅ (3/2)2 = (3/2)n–2, q.e.d. 
 
Assuming that a reasonably fast computer can execute a million calls per second 
(and that we somehow manage to represent very large Fibonacci numbers in 
memory), Fibonacci(100) would run for over (3/2)98 / 106 seconds, or more 
than 5700 years!   (The iterative implementation, by contrast, would run for 100 
microseconds.) 
 
You may notice a close conceptual link between recursion and mathematical 
induction.  The key feature of mathematical induction is that we do not have to 
trace the sequence of statements to the bottom.  We just have to first prove the base 
case and then, for an arbitrary n, show that if the induction hypothesis is true at all 
previous levels, then it is also true at the n-th level. 

a a a 

Let us see how mathematical induction applies to the analysis of recursive 
functions.  As an example, let's take the Permutations(…) function from 
Section 19.3, which generates all permutations of a string of characters: 
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inline void Swap (char &a, char &b) {char temp = a; a = b; b = temp;} 
 
void Permutations (apstring &str, int n) 
 
{ 
    if (n <= 1)     // Base case: 
                    // The permutation is completed –– report it 
        cout << str << endl;           // (e.g. print it out) 
 
    else {          // Recursive case: 
        for (int i = 0;    i < n;   i++) { 
            Swap (str[i], str[n–1]);    
            Permutations(str, n–1); 
            Swap (str[n–1], str[i]); 
        } 
    } 
} 

 
We will prove two facts about this code using mathematical induction: 
 
1. Permutations(…) returns the string to its original order when it is finished. 
2. Permutations(str,n) generates all permutations of the first n elements. 
 
In the base case, n = 1, the function just reports the string and does nothing else — 
so both statements are true.  Let us assume that both statements are true for any 
level below n (induction hypothesis).  Based on that assumption let us prove that 
both statements are also true at the level n. 
 
In the recursive case, the function swaps str[i] and str[n–1], then calls 
Permutations(str,n–1), then swaps back str[n–1] and str[i].  By the 
induction hypothesis, Permutations(str,n–1) preserves the order of 
characters in str.  The two swaps cancel each other.  So the order of characters is 
not changed in Permutations(str,n).  This proves Statement 1. 
 
In the for loop we place every element of the string, in turn, at the end of the 
string.  (This is true because the index i runs through all values from 0 to n–1 and, 
as we showed above, the order of elements does not change after each iteration 
through the loop.)  With each element placed at the end of the string we call 
Permutations(str, n–1), which, by the induction hypothesis, generates all 
permutations of the first n–1 elements.  Therefore, we combine each element 
placed at the end of the string with all permutations of the first n–1 elements, 
which generates all permutations of n elements.  This proves Statement 2. 
 
The above example demonstrates how mathematical induction helps us understand 
and, with almost mathematical rigor, prove the correctness of recursive functions.  
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By comparison, conventional code tracing and debugging and attempts at 
unfolding recursive calls to the very bottom are seldom feasible or useful. 
 

19.6 Lab: The Towers of Hanoi 
 
According to an ancient legend of the Far East, some monks in a monastery are 
trying to solve the puzzle of “The Towers of Hanoi.”  There are three pegs, with 
several disks on the first peg.  The disks are arranged in order of decreasing 
diameter from the largest disk on the bottom to the smallest on top.  The rules 
require that the disks be moved from peg to peg, one at a time, and that a larger 
disk never be placed on top of a smaller one.  The objective is to move the whole 
tower from the first peg to the second peg. 
 
1. Write a program that will solve the puzzle and print out all required moves for 

a specified number of disks. 
 
2. Examine the number of moves required for 1, 2, 3, etc. disks, find the pattern, 

and come up with a formula for the minimum number of moves required for n 
disks.  Prove the formula using the method of mathematical induction.  
Estimate how long it will take the monks to move a tower of 64 disks, 
assuming that they move two disks per second and make only correct moves. 

 

19.7 Lab: Area Fill 
 
An image is represented as a two-dimensional array of characters.  Elements of the 
array, called pixels, (picture elements) have values '.' (white) and 'x' (black).  
An image may have a number of arbitrarily shaped blobs, contours, isolated pixels, 
etc.  With each white pixel in an image we can associate a certain white area called 
the connectivity component of that pixel.  This is defined as the set of all white 
pixels that can be connected to the given pixel with a continuous chain of white 
pixels. 
 
Metaphorically we can think of all black pixels and contours as “walls” between 
white “containers”.  If we pour in black paint at a given point, then the container 
filled with black paint is the connectivity component of that point — a concept 
familiar to all users of “paint” programs.  The AreaFill(…) function takes a 
specified white pixel in an image and fills the connectivity component of that pixel 
with black.  The figure below illustrates this concept: 
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 Before:     After: 
 
 .....xx........   .....xx........ 
 ....x..xx......   ....xxxxx...... 
 ....x....xxxx..   ....xxxxxxxxx.. 
 ...x........xxx   ...xxxxxxxxxxxx 
 ..x...*........   ..xxxxxxxxxxxxx 
 ...x........xx.   ...xxxxxxxxxxxx 
 ...x..xxx...x.x   ...xxxxxxxxxx.x 
 ...x..x..x.x...   ...xxxx..xxx... 
 ...xxxx...x....   ...xxxx...x.... 
 ...............   ............... 
 
 * –– starting pixel 

 
Write a class IMAGE that represents an image.  Normally this class would be 
derived from the apmatrix<char> class: it would inherit all the elements and 
functions of apmatrix and we would be able to add new functions to it.  But since 
we do not yet know how to use inheritance in C++ (see Chapter 28), we can just 
make the pixel matrix one member of the IMAGE class: 
 
class IMAGE { 
    ... 
  private: 
 
    apmatrix<char> mPixels; 
    ... 

 
Your IMAGE class does not need a constructor or destructor: the default code will 
do.  Add three member functions: 
 
  public: 
 
    void Load(istream &file); 
    void Display(); 
    void AreaFill (int row, int col); 

 
The Load(…) function loads the image from a file.  Assume that the first line in 
the file holds the dimensions of the image—the number of rows and the number of 
columns (two integers).  The subsequent lines contain the appropriate number of 
dots and x's.  Don't forget to resize your matrix after reading the image dimensions 
from the file but before filling it with data. 
 
The Display() function displays the dimensions of the file and all the pixels. 
 
The AreaFill(…) function fills the area starting from the pixel at the specified 
location.  It is a recursive function: after filling a pixel, it proceeds with its four 



 CHAPTER 19 ~ RECURSION 343 
 

neighbors.  Make sure you remain within the image boundaries and do not refill 
pixels that are already black. 
 
The main program prompts the user for the image file name, loads and displays the 
image. Then it asks for the location of the starting  pixel, calls AreaFill(…), and 
displays the result. 
 
Note that if the area to be filled is large, the AreaFill(…) function may go quite 
deeply into recursive calls and may overflow the system stack.  Then your program 
may crash without warning.  If this happens, you can increase the size of the stack 
by adjusting the appropriate setting in your compiler configuration. 
  
 For extra credit: 
 
Implement the AreaFill(…) function using a more economical method of 
traversing horizontal lines.  Fill the horizontal segment that contains the pixel.  At 
the same time scan the adjacent lines above and below, find all segments that touch 
the newly filled pixels, and push on stack one pixel on each of these segments.  
Continue processing for all the saved pixels.  This method doesn't use recursion, 
but rather relies on your own stack.  Compare the execution times for this method 
and the four-neighbor recursive method (run the AreaFill(…) function multiple 
times; exclude the time for reading the file from disk to get a more accurate 
estimate). 
 

19.8 Summary 
 
Recursion is a programming technique based on functions calling themselves.    
 
Recursive function calls are supported by the system stack, which keeps the 
function arguments, return address, and local variables in a separate frame for each 
call.  Recursion is useful for dealing with nested structures or branching processes 
where it helps to create short, readable, and elegant code that would otherwise be 
impossible.   
 
Recursion should generally be avoided in situations that deal with linear structures 
or processes, which can be as easily and more efficiently implemented with 
iterations.   
 
The best way to understand and analyze recursive functions is by thinking about 
them along the lines of mathematical induction: attempts at unfolding and tracing 
recursive code “to the bottom” usually fail. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



345 

 
 
 
 
 
 

  20 
20 Queues 

 
 
 
 
 
 
 

20.1. Discussion   346 
20.2. Ring Buffer and Linked List Queue Implementations   347 
20.3. The apqueue Class   353 
20.4. Case Study: Application of Queues   354 
20.5. Lab: e-Mail   357 
20.6. Summary   361 



346 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

 
 
 

20.1 Discussion 
 
The queue is a data structure used for temporary storage from which the data 
elements are retrieved in the same order as they were stored.  This method is called 
FIFO — First-In-First-Out (as opposed to LIFO — Last-In-First-Out, the method 
of a stack).  A queue can hold fixed-size elements, structures, or pointers to 
structures or strings.  The queue is controlled by two functions: enqueue and 
dequeue.  enqueue inserts an element at the rear of the queue and dequeue 
removes an element from the front of the queue.  These two operations implement 
the FIFO method. 
 
The queue structure is usually used for processing events that have to be processed 
in the order of their arrival, but not necessarily right away.  The events are 
buffered in a queue while awaiting processing.  Consider, for example, an 
application that implements an e-mail system.  Each subscriber will have a 
mailbox, which can be implemented as a queue of messages.  A newly arrived 
message is inserted at the rear of the queue, and the “Read Next” user command 
removes a message from the front of the queue. 
 
(The term “queue” may sometimes refer to a more general implementation where 
in addition to removing elements at the front of the queue, the program can access 
them from the middle, reorder them, or prioritize them.  In the above example, for 
instance, it is reasonable to display the whole list of messages and allow the user to 
chose which message she wants to read next.) 
 
A queue can be implemented in different forms.  One possible implementation uses 
a singly-linked list enhanced by an additional pointer to the tail of the list. 
Elements are added at the tail of the list and removed at the head of the list.  In this 
implementation, storage for the elements is dynamically allocated using the new 
operator when an element is inserted and released with the delete operator when 
an element is removed from the queue. 
 
Another implementation uses a ring buffer, which is simply an array used in a 
circular manner.  If we used an array in a regular linear manner, we would have to 
shift the whole array forward whenever we removed the first element.  In a ring 
buffer we simply adjust the pointer that defines the “logical” first element.  The 
state of the queue is maintained with the help of two indices, front and rear.  
front points to the first element in the queue, which will be returned by the next 
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call to the dequeue(…) function; dequeue(…) also increments the front index.  
rear points to the empty slot following the last stored element.  The enqueue(…) 
function stores the next element in the slot pointed to by rear and increments the 
rear index.  Both front and rear wrap around the end of the array to the 
beginning (Figure 20-1).  This mechanism helps to maintain a queue without 
shifting the whole array. 
 
Queues are widely used at the system level for buffering commands or data 
between processes or devices.  A personal computer has a keyboard queue 
implemented as a ring buffer.  When a key is pressed, its code does not go directly 
to the active program but is placed in the keyboard buffer until the program 
requests it.  Printer output may be buffered: the characters are held in the output 
buffer until the device is ready to receive them.   An operating system may have a 
queue of print jobs waiting to be sent to a printer while other programs are 
running. 
 

 
front rear 

1   1   2   3   5   8  13

rear front

 55               2   3   5   8  13  21  34 

Before: 

After (removed 1, 1; inserted 21, 34, 55):

 
Figure 20-1.   Ring-buffer implementation of a queue 

 
 

20.2 Ring Buffer and Linked List Queue 
Implementations 

 
In this section we demonstrate two simplified classes that implement a queue of 
strings as a linked list and a queue of characters as a ring buffer.  A more general 
templated class that works with elements of any data type, apqueue, is discussed 
in the next section. 
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The LLQUEUE class implements a queue as a linked list: 
 

  LLQUEUE.H          � 
// LLQUEUE.H 
// 
// Queue implemented as a linked list. 
 
#ifndef _LLQUEUE_H_ 
#define _LLQUEUE_H_ 
 
#include "apstring.h" 
 
struct QNODE { 
    apstring info; 
    QNODE *next; 
}; 
 
class LLQUEUE { 
 
  public: 
 
    LLQUEUE(); 
    ~LLQUEUE(); 
    void enqueue (const apstring &item); 
    void dequeue (apstring &item); 
    bool isEmpty(); 
 
  private: 
 
    QNODE *mFront; 
    QNODE *mRear; 
}; 
 
#endif    // _LLQUEUE_H_     

 
The LLQUEUE constructor sets both front and rear pointers to null.  The destructor 
deletes all elements remaining in the queue. 
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  LLQUEUE.CPP      � 
// LLQUEUE.CPP 
// 
// Queue implemented as a linked list. 
 
#include "llqueue.h" 
 
LLQUEUE::LLQUEUE() 
 
// Constructor 
 
{ 
    mFront = 0; 
    mRear = 0; 
} 
 
//**************************************************************** 
 
LLQUEUE::~LLQUEUE () 
 
// Destructor: deletes all elements remaining in the queue. 
 
{ 
    QNODE *next; 
 
    while (mFront) { 
        next = mFront–>next; 
        delete mFront; 
        mFront = next; 
    } 
    mRear = 0; 
} 
 
//**************************************************************** 
 
void LLQUEUE::enqueue (const apstring &item) 
 
// Inserts item at the rear of the queue. 
 
{ 
    // Allocate a new node and copy info into it: 
    QNODE *newnode = new QNODE; 
    if (newnode) { 
        newnode–>info = item; 
        newnode–>next = 0; 

Continued    ® 
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        // Append the new node at the rear of the queue: 
        if (mRear == 0) 
            mFront = newnode; 
        else 
            mRear–>next = newnode; 
        mRear = newnode; 
    } 
} 
 
//**************************************************************** 
 
void LLQUEUE::dequeue (apstring &item) 
 
// Retrieves and removes the first element from the queue. 
 
{ 
    // Retrieve the first element from the queue: 
    if (mFront != 0) { 
        item = mFront–>info; 
 
        // Remove the node from the front of the queue 
        QNODE *next = mFront–>next; 
        delete mFront; 
        mFront = next; 
        if (mFront == 0) // If removed the last element... 
            mRear = 0; 
    } 
} 
 
//**************************************************************** 
 
bool LLQUEUE::isEmpty() 
 
// Returns true if the queue is empty, false otherwise 
 
{ 
    return mFront == 0; 
} 

 
Normally the code for a general-purpose queue class would report errors such  as 
trying to get an item from an empty queue or memory allocation failure.  For 
instance, instead of void  enqueue(…) and dequeue(…) we could make them 
return a Boolean value that would indicate success or failure.  We have decided to 
implement the enqueue(…) and dequeue(…) functions as void for the sake of 
compatibility with the apqueue class discussed in the following section. 

a a a 
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The second class, RBQUEUE, implements a ring buffer for characters: 
 

  RBQUEUE.H         � 
// RBQUEUE.H 
// 
// Queue implemented as a ring buffer. 
 
#ifndef _RBQUEUE_H_ 
#define _RBQUEUE_H_ 
 
class RBQUEUE { 
 
  public: 
 
    RBQUEUE(int size = 1024); 
    ~RBQUEUE(); 
    void enqueue (char c); 
    void dequeue (char &c); 
    bool isEmpty(); 
 
  private: 
 
    char *mBuffer; 
    int mSize; 
    int mFront; 
    int mRear; 
 
    // Private helper function that calculates the next 
    //   index with wrap–around. 
    int NextIndex(int index); 
}; 
 
#endif    // _RBQUEUE_H_     
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 RBQUEUE.CPP    � 
// RBQUEUE.CPP 
// 
// Queue implemented as a ring buffer. 
 
#include "rbqueue.h" 
 
RBQUEUE::RBQUEUE(int size) 
 
// Constructor. 
 
{ 
    mBuffer = new char[size]; 
    if (mBuffer) 
        mSize = size; 
    else 
        mSize = 0; 
 
    mFront = 0; 
    mRear = 0; 
} 
 
//**************************************************************** 
 
RBQUEUE::~RBQUEUE() 
 
// Destructor. 
 
{ 
    delete [] mBuffer; 
} 
 
//**************************************************************** 
 
void RBQUEUE::enqueue (char c) 
 
// Appends c at the end of the buffer. 
 
{ 
    int i = NextIndex(mRear); 
    if (i == mFront)            // The queue is full 
        return; 
    mBuffer[mRear] = c; 
    mRear = i; 
} 
 
//**************************************************************** 
 

Continued    ® 
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void RBQUEUE::dequeue (char &c) 
 
// Retrieves and removes the element from the front of the buffer. 
 
{ 
    if (mFront == mRear)        // The queue is empty 
        return; 
    c = mBuffer[mFront]; 
    mFront = NextIndex(mFront); 
} 
 
//**************************************************************** 
 
bool RBQUEUE::isEmpty() 
 
// Returns true if the queue is empty, false otherwise. 
 
{ 
    return mFront == mRear; 
} 
 
//**************************************************************** 
 
int RBQUEUE::NextIndex(int index) 
 
// Calculates and returns the value of the next index 
//   with wrap–around. 
 
{ 
    index++; 
    if (index == mSize) 
        index = 0; 
 
    return index; 
} 

 
The ring buffer implementation is slightly more efficient than the linked list 
because it avoids the overhead of dynamic memory allocation. 
 

20.3 The apqueue Class 
 
The apqueue class is a templated class provided by the AP C++ Development 
Committee.  The class implements the queue as a ring buffer in a manner very 
similar to the RBQUEUE class example from the previous section.  But the apqueue 
class can handle queue elements of any data type.  A queue of strings, for example, 
can be declared as: 
 
    apqueue<apstring> q; 
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The apqueue class automatically increases the size of the queue when necessary.  
There is no way to specify the desired size in the declaration.  The constructor first 
allocates a small buffer for the queue elements; later the enqueue(…) function 
may allocate a bigger buffer if the queue runs out of space.  The most commonly 
used member functions are: 
 
    void enqueue(const itemType &item); 
    void dequeue(itemType &item); 
    bool isEmpty(); 

 
The class has other member functions: 
 
    const itemType &front() const; 
         // Returns the front element without removing it from the queue. 
 
    void dequeue(); 
         // Overloaded version of dequeue(…) that removes the 
         //   front element from the queue and discards it. 
 
    int length() const; 
         // Returns the number of elements in the queue. 
 
    void makeEmpty(); 
         // Empties the queue. 

 

20.4 Case Study: Application of Queues 
 
In this section we discuss the “Pizza Plus Co. Home Deliveries” program, which 
assigns delivery orders to available drivers.  The program uses two queues: one for 
the pending pizza delivery orders, another for the available drivers.  This is a 
typical situation where queues are used: the external events are not synchronized 
and must be processed on a first-come-first-serve basis, but only as resources 
become available. 
 
The program uses the apqueue class for the queue of orders and for the queue of 
drivers. 
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  PIZZA.CPP             � 
// PIZZA.CPP 
// 
// Pizza Plus Co. Home Deliveries 
// Author: Roman Crust 
// Rev 1.1 
 
 
#include <iostream.h> 
#include <ctype.h> 
#include "apstring.h" 
#include "apqueue.h" 
 
struct ORDER { 
    apstring items; 
    apstring address; 
}; 
 
int main() 
 
{ 
    char key = ' '; 
    ORDER order; 
    apstring driverName; 
    apqueue<ORDER> pendingOrders; 
    apqueue<apstring> availDrivers; 
 
    cout << "\n*** Pizza Plus Co. Home Deliveries ***\n\n"; 
 
    while (key != 'Q') { 
 
        // Show menu, get next command: 
 
        cout << "     (N)ew order\n"; 
        cout << "     (D)river available\n";         
        cout << "     (Q)uit\n"; 
        cout << "\n"; 
        cout << "Next command ==> "; 
        cin >> key; 
        cin.ignore(256, '\n'); 
        key = toupper(key); 
 
        // Execute command: 
 
        switch (key) { 
 
          case 'N':    // Enter new order 
 
            cout << "   Address ==> "; 
            getline(cin, order.address); 

Continued    ® 
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            cout << "   Ordered Items ==> "; 
            getline(cin, order.items); 
            cout << "\n"; 
 
            pendingOrders.enqueue(order); 
            cout << "<OK>\n"; 
            break; 
             
          case 'D':    // Enter the name of available driver 
 
            cout << "   Driver Name ==> "; 
            getline(cin, driverName); 
            cout << "\n"; 
 
            availDrivers.enqueue(driverName); 
            cout << "<OK>\n"; 
            break; 
 
          case 'Q': 
            break; 
 
          default: 
            cout << "*** Invalid command ***\n"; 
            break; 
        } 
 
        // Dispatch available drivers to deliver pending orders  
 
        while (!availDrivers.isEmpty() && !pendingOrders.isEmpty()) { 
            pendingOrders.dequeue(order); 
            availDrivers.dequeue(driverName); 
            cout << "\n\n*** Attention: " << driverName << "\n" 
                 << "*\n"  
                 << "*      " << order.items << "\n" 
                 << "*  to:\n" 
                 << "*      " << order.address << "\n" 
                 << "*******************\n\n"; 
        } 
    } 
    return 0; 
} 

 
The main program is basically one while loop that processes events.  This is 
typical for an event-driven application.  Such applications wait for the next event 
and process it when it arrives. 
 
In an event-driven application the program maintains a queue of events.  The first 
event simply reports that the program has started.  Other events can be a keyboard 
key pressed, a mouse moved, or a message received from another program.  On 
each iteration through the while loop, the program checks whether any events are 
available and processes the next available event.  Sometimes processing an event 
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may create new events that are queued to the same or other applications.  For 
example, having received a click of a mouse button, the program may send 
messages to itself that certain menu selections were made, or to other programs 
that certain windows have to be repainted on the screen. 
 
The “Pizza Deliveries” example deals only with external, “real-world” events.  It 
displays a little menu for adding a new order or “checking in” an available driver 
(who presumably has just shown up for work or returned from the previous trip).  
The command is processed and either the new order is inserted into the 
pendingOrders queue or the driver’s name is inserted into the availDrivers 
queue.  After that, the program examines both queues, and if both are not empty, it 
matches the next driver to the next order and “prints” the order ticket. 
 
In this example, it is not possible for both queues to have more than one element, 
so we could use 
 
    if (!availDrivers.isEmpty() && !pendingOrders.isEmpty()) ... 

 
instead of 
 
    while (!availDrivers.isEmpty() && !pendingOrders.isEmpty()) ... 

 
In a slightly modified version (e.g., one expanded to handle situations where the 
kitchen is behind) both queues could have several elements.  Then a while loop 
would move both queues forward as far as possible. 
 

20.5 Lab: e-Mail 
 
Complete the program below, a mock e-mail system.  The program maintains an 
array of subscribers identified by their names.  Each subscriber has a mailbox, 
represented by a queue.   
 
The e-mail program should include the functions FindUser(…), NewUser(…), 
and Login(…).  FindUser(…)returns the index of the user in the subscriber array 
with the matching name.  NewUser(…)adds a new name to the subscriber array.  
Login(…)tries to find a subscriber with a given name, and if not found, 
automatically adds it to the array of subscribers.  It returns the index of the logged-
in subscriber. 
 
The ProcessCommand(…) function, called from within a loop, shows a menu 
(“Read message”, “Send message”, “Quit”) and implements the command entered.  
The “Read message” command displays the next message from the mailbox or the 



358 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

“No new mail” message.  The “Send message” command prompts the user for the 
recipient's name, subject, and (one-line) text, and posts the message to the 
recipient's mailbox.  If a message is addressed to an unknown subscriber, his or her 
name is automatically added to the array of subscribers if space is available.   
 
The sketch of the program can be found in EMAIL.CPP: 
 

  EMAIL.CPP           � 
// EMAIL.CPP 
// 
//   This program sets up a toy e–mail system. 
// 
//   The program maintains a list of subscribers in an array. 
//   Initially the list is empty.  The program adds new 
//   subscribers automatically when a new name "logs in" and 
//   when a message is addressed to a new name. 
//   The list may have at most 10 subscribers. 
// 
//   Author: Eudora Scanty 
 
#include <iostream.h> 
#include <ctype.h> 
#include <string.h> 
#include "apstring.h" 
#include "apqueue.h" 
 
struct MESSAGE { 
    apstring from; 
    apstring to; 
    apstring subject; 
    apstring text; 
}; 
 
struct SUBSCRIBER { 
    apstring name; 
    apqueue<MESSAGE> mailbox; 
}; 
 
// Array of subscribers 
//  (these constants and variables are declared as global because 
//   they are central to this program and most of the functions 
//   need them): 
 
static const int MAXUSERS = 10;  // Maximum number of subscribers 
static apvector<SUBSCRIBER> subscriber(MAXUSERS); 
static int nUsers = 0;    // Current number of users 
 
//**************************************************************** 

Continued    ® 



 CHAPTER 20 ~ QUEUES 359 
 

 
static int FindUser(const apstring &name) 
 
// Returns the index of the user whose name matches 
//   "name", or –1 if not found. 
 
{ 
    ... 
    ... 
} 
 
//**************************************************************** 
 
static int NewUser(const apstring &name) 
 
// Adds a new user to the array of subscribers. 
// Returns the index of the new subscriber or 
//   –1 if failed. 
 
{ 
    int n; 
 
    if (nUsers >= MAXUSERS) { 
        cout << "Cannot add " << name << " (out of space).\n"; 
        return –1; 
    } 
    ... 
    ... 
} 
 
//**************************************************************** 
 
static int Login(const apstring &name) 
 
// Finds the name in the subscriber array or 
//   adds a new user with the given name if not found. 
// Returns the index of logged–in user, 
//   or –1 if failed. 
 
{ 
    int n; 
 
    n = FindUser(name); 
    if (n < 0) 
        n = NewUser(name); 
 
    return n; 
} 
 
//**************************************************************** 
 

Continued    ® 
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static void ProcessCommands(int n) 
 
{ 
    char key = ' '; 
    apstring name; 
    MESSAGE msg; 
    int nDest;   // index of the destination subscriber. 
 
    while (key != 'Q') { 
 
        // Show menu, get next command: 
 
        cout << "     (R)ead next message\n"; 
        cout << "     (S)end message\n";         
        cout << "     (Q)uit\n"; 
        cout << "\n"; 
        cout << "Next command ==> "; 
        cin >> key; 
        cin.ignore(256, '\n'); 
        key = toupper(key); 
 
        // Execute command: 
 
        switch (key) { 
 
          case 'R':    // Read next message 
 
            ... 
            ... 
 
            break; 
 
          case 'S':    // Send message 
 
 
            ... 
            ... 
 
            break; 
 
          case 'Q':        // Quit 
            break; 
 
          default:             
            cout << "*** Invalid command ***\n"; 
            break; 
        } 
    } 
} 
 
//**************************************************************** 

Continued    ® 
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int main() 
 
{ 
    apstring name; 
    int n; 
 
    for (;;) { 
        cout << "Username (or 'Q' to quit): "; 
        getline(cin, name); 
        if (name == "Q" || name == "q") 
            break; 
        n = Login(name); 
        if (n >= 0) { 
            cout << "\nWelcome " << subscriber[n].name << "\n\n"; 
            ProcessCommands(n); 
        } 
    } 
 
    return 0; 
} 

 
Fill in the blanks in the program.  Develop a comprehensive QA (quality 
assurance) plan that will test your program under various conditions, paying 
special attention to singular conditions (e.g., the list of subscribers is empty or full, 
the mailbox is empty, the subscriber is not found, etc.). 
 

20.6 Summary 
 
The Queue is a data structure for storing and retrieving elements in a 
First-In-First-Out (FIFO) manner.   
 
A queue can be implemented as a ring buffer, which is simply an array used in a 
circular way.  The front index marks the beginning of the queue, where the next 
element will be removed; the rear index marks the end of the queue (the first 
available slot), where the next element will be inserted.  Both pointers wrap around 
the end of the array. 
 
Another queue implementation may use a singly-linked list with an additional 
pointer to the tail of the list, where the new elements will be inserted. 
 
Queues are usually used for processing events that have to be handled in the order 
of their arrival but may have to wait for available resources or an appropriate time.  
Queues are widely used for system tasks such as scheduling jobs, passing data 
between processes, and input/output buffering for peripheral devices. 
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The templated apqueue class implements a queue for elements of any data type.  
The most commonly used member functions are enqueue(…), dequeue(…) and 
isEmpty(): 
 
    apqueue<apstring> q; 
    apstring name; 
 
    q.enqueue(name); 
    q.dequeue(name); 
    while (!q.isEmpty())... 
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21.1 Discussion 
 
By now we have covered most of the syntax and many features of C++, and you 
may be wondering: Why do we need more?  We should bear in mind that a 
programming language is an artificial creation of its designers.  Moreover, unlike a 
building or a bridge, a programming language does not have to take into account 
the laws of gravity or the strength of the materials—its “top floor” may weigh a 
hundred times more than the foundation.  So it doesn't always make sense to ask 
why things are the way they are.  Clearly C++ is a very rich language to which 
new features have been added over time.  C++ sets out to tighten the rules and at 
the same time increase flexibility—two contradictory goals.  So it often fights its 
own design flaws by adding new features and syntax. 
 
In this chapter we explain several new features of C++ classes: 
 
• Constructors with initializer lists; 
• Two ways to overload an operator: as a member and as a non-member; 
• friend functions and classes; 
• Iterators; 
• Static class members. 
 
Initializer lists are needed because there is no other way to call constructors for 
those members of a class that are instances of another class.  The friend keyword 
lifts restrictions on accessing private members of a class.  Iterators help to cycle 
through all the elements of  an array or linked list that is a private member of a 
class.  Static members allow several instances of a class to share and control the 
same memory location. 
 
Section 21.4 shows the standard recipe for coding the “canonical features” of a 
class: a default constructor, a copy constructor, and the overloaded assignment 
operator.  In Section 21.9, we touch on a few design considerations related to the 
use of classes. 
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21.2 Initializer Lists 
 
Suppose a class has a member of another class type: 
 
class FIRSTCLASS { 
 
    ... 
  private: 
 
    SECONDCLASS mPassenger; 
    ... 
}; 

 
Suppose that as part of the FIRSTCLASS constructor we need to initialize 
mPassenger with certain values.  This is a problem: there is no place to call the 
appropriate constructor for mPassenger.  If mPassenger were declared by itself, 
we could simply write: 
 
    SECONDCLASS mPassenger(x, y, z); 

 
This declaration implicitly calls the appropriate constructor for mPassenger.  But 
what can we do when mPassenger is a class member?  If we try to initialize 
members of mPassenger directly, we will discover that private members of 
mPassenger are not accessible through FIRSTCLASS's constructor.   Initializer 
lists come to the rescue.  The syntax is: 
 
// Constructor: 
 
FIRSTCLASS::FIRSTCLASS(...) : mPassenger(x, y, z) 
 
{ 
    ... // other code 
} 

 
In the above code, mPassenger(x,y,z) is not in the body of the constructor.  It 
is more like a reminder that in the process of building an object of the 
FIRSTCLASS type, the program has to build its member mPassenger using the 
appropriate SECONDCLASS constructor, which knows how to interpret the 
arguments x, y, z. 
 
x, y, z may be literal constants or global constants or variables defined above the 
constructor.  They may also be arguments of the FIRSTCLASS constructor that are 
passed to members of the initializer list.  For example: 
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// stack.h 
// ======= 
 
class STACK { 
 
 ... 
  private: 
 
    int mSize; 
    int mSp; 
    apvector<int> mBuffer;   // Holds stack elements. Size? 
                             //   (cannot be initialized here). 
  
}; 
 
 
// stack.cpp 
// ========= 
 
// Constructor: builds a stack of the specified size. 
 
STACK::STACK(int size) 
           : mBuffer(size)  // size argument is passed to mBuffer 
 
{ 
    mSize = size; 
    mSp = 0; 
} 

 
In a more general case a class may have several members that are instances of 
other classes.  Then we can list all their constructors, separated by a comma, after 
the colon: 
 
FIRSTCLASS::FIRSTCLASS(...) : mItem1(...), ... , mItemk(...) 
 
{ 
   ... // other code 
} 

 
Note that there is no need to list members without arguments in the initializer list 
because the default constructors for these members will be used automatically. 
 
Some programmers prefer to initialize all class members, including members of 
built-in data types, in the initializer list.  Often the constructor code then has 
nothing left to do.  For example: 
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// stack.cpp 
 
STACK::STACK(int size) 
           : mSize(size),   // mSize = size; 
             mSp(0),        // mSp = 0; 
             mBuffer(size) 
{}                          // Nothing to do! 

a a a 

Initializer lists are especially important when we use structures or classes whose 
members are vectors, matrices, or strings (represented by the apvector, 
apmatrix, or apstring types).  Initializer lists are  the only place where we can 
initialize such members to define the size of a vector, the dimensions of a matrix, 
or the contents of a string.  Consider, for example, the following structure: 
 
struct GAME { 
    apstring mName;             // Game name 
    apmatrix<char> mBoard;      // Game board 
}; 

 
How do we tell the mBoard member what the dimensions of the matrix are?  And 
how do we initialize the mName string with a particular name?  If we used built-in 
arrays, we could write: 
 
struct GAME { 
    char mName[30];             // Game name 
    char mBoard[3][3];          // Game board 3 by 3 
}; 
 
GAME game = {"Tic–Tac–Toe"};    // Syntax with braces to initialize 
                                //   struct members in declarations 

 
But if we try something similar with apstring and apmatrix, the compiler will 
report syntax errors: 
 
struct GAME { 
    apstring mName; 
    apmatrix<char> mBoard(3,3);    // Syntax error 1. 
}; 
 
GAME tictactoe = {"Tic–Tac–Toe"};  // Syntax error 2. 

 
The first error message will tell you that you cannot specify arguments in member 
declarations.  The second error message will tell you that initialization with braces 
is not allowed for the structure GAME (because it contains members with types such 
as apstring or apvector). 
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But unless we specify the matrix dimensions our GAME structure is useless: the 
matrix dimensions are set to zero by default.  What to do?  Our first impulse might 
be to initialize each instance of GAME “manually,” resizing the mBoard matrix as 
needed using the resize(…) function.  We may think of writing a separate 
initialization function, or several functions, for doing this.  For example: 
 
void SetForTicTacToe(GAME &game) 
// Initializes a GAME structure for Tic–Tac–Toe. 
{ 
    game.mName = "Tic–Tac–Toe"; 
    game.mBoard.resize(3,3); 
} 

  
void SetForGo(GAME &game, int size) 
// Initializes a GAME structure for Go. 
{ 
    game.mName = "GO"; 
    game.mBoard.resize(size, size); 
} 

 
This approach is dangerous: we would have to remember to initialize every GAME 
object before we used it.  Also, it would be impossible to declare const GAME 
objects.  But more importantly, this approach would fail completely if GAME were 
not a struct but a class with encapsulated data members: then members of 
GAME would not be accessible to our initialization functions or any other code 
outside the GAME class. 
 
A much better solution is to use initializer lists.  We can provide a constructor for 
GAME that will pass the appropriate arguments to the apstring and apmatrix 
constructors: 
 
struct GAME { 
    apstring mName;             // Game name 
    apmatrix<char> mBoard;      // Game board 
 
    GAME();                     // Constructor: initializes GAME 
                                //   for Tic–Tac–Toe. 
}; 

 
// Constructor for struct GAME: 
 
GAME::GAME() 
      : mName("Tic–Tac–Toe"), mBoard(3,3)   // Initializer list 
{ 
    ... // Any additional code if necessary 
} 
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The initializer list, together with any short and simple code for the constructor, 
may also be placed inside the struct or class definition.  For example: 
 
struct GAME { 
 
    apstring mName;             // Game name 
    apmatrix<char> mBoard;      // Game board 
 
    GAME()                      // Constructor for Tic–Tac–Toe 
      : mName("Tic–Tac–Toe"), mBoard(3,3) 
    {} 
}; 

 
Now if your program declares the variable  
 
    GAME game; 

 
the object game will be created with the name “Tic-Tac-Toe” and a Tic-Tac-Toe 
board. 
 
You can provide several constructors with different sets of arguments for your 
structure or class.  Some of these arguments may be passed to the constructors of 
members that are strings, vectors, or matrices.  For example: 
 
class GAME { 
 
  public: 
 
    GAME()                       // Constructor for Tic–Tac–Toe 
                                 //   (default ––no arguments) 
      : mName("Tic–Tac–Toe"), mBoard(3,3) 
    {} 
 
    GAME(int size)               // Constructor for GO 
                                 //   (one argument––size) 
      : mName("GO"), mBoard(size, size) 
    {} 
 
    GAME(const apstring &name, int size) 
                                 // Constructor for other games 
      : mName(name), mBoard(size, size, ' ') 
    {} 
 
  private: 
 
    apstring mName;             // Game name 
    apmatrix<char> mBoard;      // Game board 
}; 
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Now if your program declares a GAME object with no arguments, the default 
constructor will be used and the object created will be a Tic-Tac-Toe board: 
 
    GAME game;   // Declare a game object for Tic–Tac–Toe. 
 

If one integer argument is provided, the appropriate constructor will initialize 
mName to “GO” and create a square board of the specified size: 
 
    GAME game(19);  // Declare a game object for GO with 
                    //   the name "GO" and a 19 by 19 board 
 

Given two arguments, a string and an int, the last constructor will be used.  It will 
set the name to the specified string and build a square matrix mBoard of the 
specified size.  It will also fill mBoard with spaces, because we specified the ' ' 
(the space char) fill value for the mBoard constructor in the initializer list.  For 
example: 
 
    GAME game1("Reversi", 8); 
                    // Declare a game object for Reversi with 
                    //   the name "Reversi" and an 8 by 8 board, 
                    //   initially filled with spaces. 
    GAME game2("Hasami Shogi", 9); 

 

21.3 Operator Overloading 
 
Operator overloading is the C++ feature for changing the meaning of standard 
operators such as +, *, >=, and so on.  We have already seen in Part 1 
(Section 13.5) how << and >> are overloaded to represent I/O stream insertion and 
extraction operators for structures. 
 
Class designers often overload operators because they want to support elegant 
syntax for using their classes.  But the assignment operator is often overloaded out 
of necessity. 
 
The assignment operator for copying class objects may be overloaded 
when the default, member-by-member assignment does not do the job 
properly.  Arithmetic operators may be overloaded when a class 
represents some algebraic object (e.g., a fraction, a complex number, or a 
“big integer”). 

 
The apstring class overloads the + operator to signify concatenation of strings. 
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Recall that in C++ the difference between operators and functions is minimal.  An 
operator X is a function with the name operatorX(…) (where X is a standard 
operator symbol +, *, etc.).  C++ allows you to overload both unary and binary 
operators, but for the sake of simplicity let us limit our discussion to binary 
operators.  A binary operator is a function that needs two arguments: a left-hand 
side and a right-hand side.  The arguments do not necessarily have to be of the 
same data type. 
 
There are two ways to overload an operator for a class: as a member of 
the class and as a free-standing operator (not a member of any class). 

 
When an operator is overloaded as a member, a prototype for the operator is placed 
inside the class definition, together with other public member functions.  The 
left-hand argument is implicit: it is the instance of the class that owns the operator. 
 
class SOMECLASS { 
 
  public: 
    ... 
    resultType operatorX(argType b); 
        ... 
}; 

 
Theoretically, a member operator can be used with the regular syntax for calling 
member functions: 
 
    SOMECLASS a; 
    argType b; 
    resultType c; 
 
    c = a.operatorX(b); 

 
But the whole point of overloaded operators is that they allow you to use the 
operator syntax: 
 
    c = a X b;   // The same as c = a.operatorX(b); 

 
When an operator is overloaded as a free-standing operator, its prototype is placed 
outside the class definition and both arguments are explicit.  Either argument can 
have the data type of our class. 
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class SOMECLASS { 
    ... 
}; 
 
resultType operatorX (argType1 a, argType2 b); 

 
where argType1, argType2, or both is SOMECLASS.  Again, theoretically it can be 
used as a regular function: 
 
    argType1 a; 
    argType2 b; 
    resultType c; 
 
    c = operatorX(a, b); 

 
But of course it will be used as an operator: 
 
    c = a X b; 
 

Each of the two methods—member and non-member overloading—has its own 
limitations. 
 
When you use an operator overloaded as a class member, the first 
(left-hand-side) operand must always be of that class data type. 

 
Suppose, for instance, that in the apstring class you want to have three versions 
of the overloaded + operator: one for concatenating two strings, and two others for 
appending a character at the end and at the beginning of a string: 
 
    apstring str1, str2, result; 
    char ch; 
 
    result = str1 + str2; 
    result = str1 + ch; 
    result = ch + str2; 

 
The first two forms of + may be overloaded as member operators of the apstring 
class, but the third must be a free-standing operator. 
 
In the assignment operator 
 
    a = b; 

 
the left-hand-side argument is, as a rule, of the class type.  So the = operator is 
normally overloaded as a class member operator.  The same is true for += and 
other compound assignment operators.  But in the I/O stream extraction and 
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insertion operators the left-hand-side argument has the type istream or ostream, 
respectively: 
 
    cin >> classVar; 
    cout << classVar; 
 

 So these operators have to be overloaded as free-standing operators. 
 
The problem with free-standing operators is that they may not have access to the 
private members of the class.  The class designer has to find a way around this.  He 
may be able to use the class's constructors, public accessor member functions or 
operators, or he may provide additional “undocumented” accessors or public 
member functions that do the bulk of the work.  For example: 
 
// bigint.h 
class BigInt { 
 
  public: 
    ... 
    // facilitate operators ==, <, << without friends 
    ... 
    void Print (ostream &os) const; 
    ... 
}; 
 
... 
ostream &operator<< (ostream &os, const BigInt &x); 
 
// bigint.cpp 
... 
ostream &operator<< (ostream &os, const BigInt &x) 
 
{ 
    x.Print(os); 
    return os; 
} 

 
Alternatively he may declare the free-standing operator a friend to his class (see 
Section 21.6), thus explicitly giving it access to all private members of his class.  
The latter is the standard approach, but the AP C++ Development Committee does 
not require the knowledge of “friends” and avoids using “friends” in its materials. 
 
The code for the overloaded operators is usually placed into the class 
implementation file, together with the code for member functions and non-member 
functions related to the class: 
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resultType SOMECLASS::operatorX (argType b) 
 
// SOMECLASS member operator 
 
{ 
    ... 
} 
 
resultType operatorX (argType1 a, argType2 b) 
 
// Free–standing operator.  Usually, argType1, argType2, or both are 
//   of the SOMECLASS type. 
 
{ 
    ... 
} 

a a a 

Let us consider three examples of overloaded operators from the apstring class.  
The first is the assignment operator, which is a member of the class.  This operator 
is declared together with other public member functions in the class definition in 
apstring.h: 
 
class apstring { 
 
  public: 
    ... 
    const apstring &operator= (const apstring &str); 
    ... 
}; 

 
The syntax in this declaration has several elements.  First of all, it declares a 
member function operator=: 
 
    const apstring & operator= (const apstring &str); 

 
The return data type of this function is a constant reference to apstring: 
 
    const apstring & operator= (const apstring &str); 

 
This allows assignments to be chained together: 
 
    str1 = str2 = str3;  // The same as:  str1 = (str2 = str3); 

 
The keyword const indicates that the returned value cannot be modified.  The 
return type is a reference but const prevents it from being used as an lvalue, such 
as: 
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    (str1 = str2) = str3;   // Not allowed! 

 
The operator= function takes one argument of the const apstring & type: 
 
    const apstring &operator= ( const apstring & str); 

 
This means that str is passed by reference and that it may not be modified inside 
the operator code.  The code for this operator can be found in apstring.cpp.  It 
is discussed in the next section. 

a a a 

The second example is the overloaded << operator.  This is a free-standing 
operator.  Its prototype is supplied in apstring.h, but it is placed outside the 
class definition: 
 
class apstring { 
    ... 
}; 
...     
ostream &operator<< (ostream &os, const apstring &s); 

 
Like assignment this is a binary operator.  And since it is a free-standing operator, 
it takes two arguments.  The first argument is a reference to an output stream, the 
second is a constant reference to an apstring.  The operator returns os, the 
reference to the same stream, so that << operators can be chained together. 
 
The code for this operator has been placed in apstring.cpp.  It relies on the 
c_str() accessor member function which returns the pointer to the string buffer, 
a regular null-terminated string.  The << operator is already defined for null-
terminated strings, so it can be used in the implementation of << for the apstring 
class: 
 
ostream &operator<< (ostream &os, const apstring &s) 
 
{ 
    os << s.c_str();   // Or simply: return os << s.c_str(); 
    return os; 
} 

a a a 

The third example is the + operator, overloaded as a free-standing operator.  
Actually the apstring class offers three overloaded forms of +: 
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apstring operator+ (const apstring &str1, const apstring &str2); 
apstring operator+ (const apstring &str, char ch); 
apstring operator+ (char ch, const apstring &str); 

 
Again, these prototypes are outside the class definition.  All three forms return a 
new apstring object.  All of them are implemented as non-member operators for 
the sake of the third form, where the first argument is not an apstring but a 
char.  (The free-standing operator also lets us use a literal string as the first 
argument.) 
 
Normally such operators would be declared friend to the apstring class: 
 
class apstring { 
 
  friend apstring operator+ (const apstring &str1, const apstring &str2); 
  ... 
}; 

 
But we can  avoid using friends: 
 
apstring operator+ (const apstring &str1, const apstring &str2) 
 
// Concatenates str1 and str2 and returns the new string 
 
{ 
    apstring result = str1;    // Construct result equal to str1. 
    result += str2;            // append str2 using the += operator. 
    return result; 
} 

 
In the above code  += is another overloaded operator, one overloaded as a member 
of the apstring class.  +=, therefore, has access to the private members of 
apstring and, as you can see, does most of the work.  This code is very short, but 
it is less efficient than a direct implementation of + (without +=) because the 
strings will be copied unnecessarily a couple of times. 
 

21.4 Canonical Features of a Class 
 
In C++, classes represent user-defined types.  It is desirable that these types 
behave, as much as possible, like built-in types.  As a minimum, a well-constructed 
class should provide the “canonical” features needed to allow convenient object 
declarations and assignments: 
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// TEST.CPP 
 
#include <iostream.h> 
 
int main() 
 
{ 
    SOMECLASS x; 
    SOMECLASS y = x; 
    ... 
    y = x; 
    ... 
} 

 
In this section we provide a recipe for implementing these features.  The following 
techniques are used: 
 
int main() 
 
{ 
    SOMECLASS x;      // <== Default constructor 
    SOMECLASS y = x;  // <== Copy constructor 
    ... 
    y = x;            // <== Overloaded assignment operator 
    ... 
} 

 
The default constructor, copy constructor, assignment operator and 
destructor are considered canonical features of any well-defined class. 

 
The default constructor does not take any arguments.  The copy constructor takes 
one argument: a reference to an object of the same class.  The overloaded 
assignment operator copies a class object.  The destructor performs any required 
clean-up. 
 
These features are especially important when dealing with templated classes, such 
as apvector and apmatrix, because these classes assume that the default 
constructor, copy constructor, and assignment work properly for their elements.  
For instance, if we use 
 
apvector<SOMECLASS> v; 

 
SOMECLASS must have a working assignment operator. 
 
Copy constructors are also used in functions that return a class object.  If a 
function returns a value of the SOMECLASS type, SOMECLASS must have a copy 
constructor. 
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a a a 

What happens if you do not define the default constructor, copy constructor, or 
assignment operator?  If you do not code some of the canonical features, the C++ 
compiler will supply their “automatic” versions (we use the word “automatic” here 
in order not to confuse different meanings of the word “default”).  You have to 
consider carefully whether these automatic versions will do the job: quite often 
they do. 
 
If you do not define any constructors, the automatic default constructor 
will be used.  It calls the default constructors for each class member that 
has a user-defined (some other class) data type, and leaves all members of 
built-in data types uninitialized. 

 
An automatic default constructor will be generated only if a class does not have 
any constructors at all. 
 
Consider, for example, the following class with two data members: 
 
class FLIGHT { 
  ... 
 
    int flightNumber; 
    apstring destination; 
}; 

 
The automatic default constructor will make destination an empty string 
because the apstring class has the default constructor that makes an empty 
string.  flightNumber, however, will contain garbage. 
 
The automatic copy constructor uses member-by-member assignment for 
built-in types and calls copy constructors for all user-defined (class) type 
members.  Likewise, the automatic assignment operator will use 
member-by-member assignment. 

 
This may work fine as long as all the class members have proper assignment 
operators and the class does not have any members that are pointers to arrays. 
 
The automatic destructor simply executes destructors for all members of 
user-defined class types. 

a a a 
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The canonical features are declared in the class definition as follows: 
 
class SOMECLASS { 
 
  public: 
    ... 
    SOMECLASS();                    // Default constructor 
    SOMECLASS(const SOMECLASS &x);  // Copy constructor 
    const SOMECLASS &operator= (const SOMECLASS &x); 
                                    // Assignment operator 
    ~SOMECLASS()                    // Destructor 
    ... 
}; 

 
Let’s see how these features can be coded in the apstring class: 
 
// apstring.h 
 
class apstring { 
 
  public: 
    ... 
    apstring();                    // Default constructor 
    apstring(const apstring &str); // Copy constructor 
    const apstring &operator= (const apstring &str); 
                                   // Assignment operator 
    ... 
  private: 
    int mLength;         // Current length 
    int mCapacity;       // Buffer capacity 
    char *mCstring;      // Pointer to the char buffer 
}; 

 
// apstring.cpp 
 
#include "apstring.h" 
... 
 
apstring::apstring() 
 
// Default constructor: builds an empty string. 
 
              : mLength(0), mCapacity(1) 
{ 
    mCstring = new char[1]; 
    mCstring[0] = '\0';   // Holds only the terminating null char. 
} 
 

Continued    ® 



380 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

apstring::apstring(const apstring &str) 
 
// Copy constructor 
 
{ 
    mLength = str.length(); 
    mCapacity = mLength + 1; 
    mCstring = new char[mCapacity]; 
    strcpy(mCstring, str.mCstring);  // Copy the char buffer 
} 

 
Note that the automatic member-by-member copy constructor wouldn't do the job 
for the apstring class because the mCstring pointer in the copy would simply 
be assigned to the value of mCstring in the original, making the mCstring 
pointers in the original and in the copy point to the same buffer.  This situation 
would be fatal: if one string released or reassigned the buffer, the second would 
continue to point to it, not knowing about the change.  That is why we need to 
code the copy constructor ourselves: to allocate a new buffer in the copy and copy 
the contents of the original buffer into it. 
 
The same is true for the assignment operator.  In addition, the code for the 
assignment operator must reallocate the buffer if the current buffer does not have 
enough capacity to hold the right-hand-side string: 
 
const apstring &apstring::operator= (const apstring &str) 
 
// Assignment operator 
 
{ 
    int len; 
 
    if (this != &str) {                      // Do not assign to itself! 
        len = str.length(); 
        if (mCapacity < len + 1) {           // If not enough room–– 
            delete [] mCstring;              //   deallocate the buffer 
            mCapacity = len + 1;             //   and allocate a new one 
            mCstring = new char[mCapacity]; 
        } 
        mLength = len;                       // Set the new length 
        strcpy(mCstring, str.mCstring);      // Copy the string 
    } 
    return *this;         // Return the reference to itself! 
} 

 
The above code is pretty straightforward with the exception of two new idioms: 
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    if (this != &str) // Compare this to the address of str 
 
and 
 
    return *this; 

 
These idioms are pretty standard in the code for an overloaded assignment 
operator.  The first is used to make sure that an object is not assigned to itself.  The 
second is used to return the reference to the class object (which is needed in order 
to chain several = operators together).  Both idioms use the this pointer.  this is 
a C++ reserved word which means “the pointer to the current object.”  In our case 
this has the type apstring*.  Whenever we refer to class members, we could 
use the this–> prefix.  For example: 
 
    this–>mLength = len; 

 
is exactly the same as: 
 
    mLength = len; 

 
*this (with a star) converts the type from apstring* to the apstring& 
required by the operator return type. 
 

21.5 Constructors as Casts 
 
Besides the default constructor and the copy constructor, a well-designed class 
may provide constructors from other data types that are semantically closely 
related to the class.  You can think of “closely related” types as those that can be 
cast into your class object. 
 
For example, a “big integer” class object may represent very big integer numbers 
(as long arrays of digits).  It is reasonable, though, to expect that a regular integer 
(type int) can be converted into a BigInt.   To accomplish this, BigInt's 
designer provides a constructor from int: 
 
class BigInt { 
 
  public: 
    ... 
    BigInt (int n);  // Constructor from int 
    ... 
}; 
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The apstring class provides a constructor from a literal string: 
 
class apstring { 
 
  public: 
    ... 
    apstring(const char *s);  // A string in double quotes has the 
                              //   const char* data type. 
    ... 
}; 

 
Constructors from related types take one argument.  They play three 
important roles in programs: initialization of class objects, explicit casts, 
and implicit casts of function arguments and operands. 

 
The first use of constructors from related types is initialization.  For example: 
 
    BigInt factorial = 1; 
    apstring name = "Sunshine"; 

 
The above declarations actually imply casts: 
 
    BigInt factorial = BigInt(1); 
    apstring name = apstring("Sunshine"); 

 
The compiler makes sure that the appropriate constructor (BigInt(int) and 
apstring(const char *) in our examples)  exists, and adds a call to it to your 
code. 
 
The second use of constructors is for explicit casts.  For example: 
 
    BigInt x; 
    int n; 
 
    cin >> n; 
    x = BigInt(n);  // Cast; calls the BigInt(int) constructor. 

 
The third use is for implicit casts.  Suppose your BigInt class has an overloaded + 
operator: 
 
BigInt operator+ (const BigInt &a, const BigInt &b); 
 

This operator expects two BigInt arguments.  Still, in the client program you can 
write: 
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    BigInt x = 1, sum; 
    int n; 
    ... 
    sum = x + n; // Same as: sum = x + BigInt(n); –– implicit cast 
 

You can also write: 
 
    sum = n + x; 

 
But if you write: 
 
    BigInt sum; 
    int m = 1, n = 1; 
    ... 
    sum = m + n;  // Caution: the result may overflow! 

 
then the regular + for integers will be executed first, and only the result will be 
converted into BigInt by calling the BigInt(int) constructor.  So automatic 
promotion works pretty much the same way as for built-in types. 
 
If a function or an operator is called with arguments of certain types, and 
that form of function or operator is not defined, the compiler tries to find 
casts that convert arguments into the required types.  The compiler uses 
promotion rules for built-in types and constructors for user-defined class 
types.  The compiler checks if the required conversion can be 
accomplished without ambiguity.  But if in doubt, use explicit casts! 

 

21.6 Friend Classes and Functions 
 
The keyword friend is used to give a non-member function or operator access to 
all members (including the private members) of a class.  friend declarations may 
appear anywhere within a class definition.  For example: 
 
class IMAGE { 
 
  friend ostream &operator<< (ostream &file, const IMAGE &im); 
  friend istream &operator>> (istream &file, IMAGE &im); 
  friend void PrintImage (const IMAGE &im); 
 
  private: 
    ... 
}; 
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These declarations give operator<<, operator>>, and the PrintImage(…) 
function access to all private members of the class IMAGE.   
 
Friend declarations do not make friend functions or operators members of the 
class, do not affect their code in any way, and do not replace function prototypes.  
They simply inform the compiler that these particular free-standing functions or 
operators are allowed to use private members of that class. 
 
If necessary, a whole class may be declared a friend of your class.  That 
gives all its member functions access to all the members of your class. 

 
A friendship is not necessarily symmetrical.  As a class designer, you determine 
your class's friends; users of your class cannot declare their classes friends to your 
class and gain access to its private members. 
 
Friend classes and functions should be used judiciously because they weaken 
encapsulation. 
 

21.7 Iterators 
 
Encapsulation creates a particular problem in a simple situation where a class has 
an array or a list and a non-member function needs to access its elements one by 
one.  For example, we may have a general-purpose linked-list class LIST with 
Insert(…) and Remove(…) functions, etc.  This class does not know how its 
elements will be used.  Another class or function may need at some point to 
traverse the list and, say, count the elements that match a given pattern.  But the 
elements of the list are private members.  One solution would be to make all the 
members of LIST public — a sin against encapsulation.  Another approach is to 
declare each class and non-member function that seeks access to the list a friend, 
but that would ruin the generality of the LIST class because it is hard to foresee all 
functions that may need to traverse a list in the future. 
 
Yet another solution could be to include the iteration functionality within the LIST 
class.  We can add a data member that keeps track of the current position in the list 
and a member function that returns the data in the current node and advances to the 
next node.  For example: 
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struct NODE { 
    apstring data; 
    NODE *next; 
}; 
 
class LIST { 
 
  private: 
 
    NODE *head, *tail; 
    NODE *current; 
 
  public: 
 
    ... 
    void StartIterations() { 
        current = head; 
    } 
    bool NextData(apstring &str) { 
        if (!current) 
            return false; 
        str = current–>data; 
        current = current–>next; 
        return true; 
    } 
}; 

 
This is feasible, but it limits the iteration functionality to only one iteration loop at 
a time.  The programmer must keep track of who is currently iterating through the 
list and make sure that no one else tries to do the same in the middle.  Tasks which 
require nested for or while loops, such as finding duplicates in a list, would not 
be supported. 
 
As usual, C++ successfully solves the problem (that it created for itself).  The 
solution uses a complementary friend class, called an iterator, which implements 
just the iterations through the list.  You can create several instances of the iterator 
and therefore run any number of iterators concurrently without any conflict. 
 
The original class and the iterator class work together as a team.  A constructor is 
provided for the iterator class which initializes it with the object of the original 
class.  Another constructor — a copy constructor — initializes it with another 
iterator for nested iterations. 
 
The following sketch of a linked list class provides an example: 
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 ITERATOR.CPP       � 
// LIST.H 
 
#include "apstring.h" 
 
struct NODE { 
    apstring data; 
    NODE *next; 
}; 
 
// *** Linked List class *** 
 
class LIST { 
 
  private: 
 
    NODE *head, *tail; 
 
  public: 
 
    LIST(); 
    void Insert (const apstring &str); 
    ~LIST(); 
 
  friend class LISTITER; 
 
}; 
 
// *** Companion iterator class *** 
 
class LISTITER { 
 
  private: 
 
    NODE *current; 
 
  public: 
 
    LISTITER(const LIST &list);         // Constructor from a LIST object 
    LISTITER(const LISTITER &listiter); // Copy constructor 
 
    bool NextData(apstring &str); 
            // Places data from the current node into str and 
            //   advances the current pointer. 
            // Returns true if successful, false if at the end 
            //   of the list. 
}; 
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 ITERATOR.CPP       � 
// LIST.CPP 
 
#include "list.h" 
 
// *** LIST implementation: *** 
 
LIST::LIST() 
 
// Default constructor: makes an empty list. 
 
        : head(0), tail(0) // head and tail are set to null. 
{} 
 
void LIST::Insert (const apstring &str) 
 
// Inserts str into the list. 
 
{ 
    NODE *newNode; 
 
    newNode = new NODE; 
    newNode–>data = str; 
    newNode–>next = 0; 
    if (tail) 
        tail–>next = newNode; 
    else 
        head = newNode; 
    tail = newNode; 
} 
 
LIST::~LIST() 
 
// Destructor: deletes all nodes. 
 
{ 
    NODE *temp; 
 
    while (head) { 
        temp = head–>next; 
        delete head; 
        head = temp; 
    } 
} 

Continued    ® 
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// *** LISTITER implementation *** 
 
LISTITER::LISTITER(const LIST &list) 
 
// Constructor from LIST 
 
{ 
    current = list.head; // Set current to the head of the list 
} 
 
LISTITER::LISTITER(const LISTITER &otheriter) 
 
// Copy constructor 
 
{ 
    current = otheriter.current; 
    // This is redundant: we could use the automatic member–by–member 
    //   copy constructor.  Here we intentionally want the pointer 
    //   current in the original iterator and in the copy to point 
    //   to the same memory location––a node in the list. 
} 
 
bool LISTITER::NextData(apstring &str)    
 
// Places data from the current node into str and 
//   advances the current pointer. 
// Returns true if successful, false if at the end of the list. 
 
{ 
    if (!current) 
        return false; 
 
    str = current–>data; 
    current = current–>next; 
 
    return true; 
} 

 
The following test program shows how a single iterator is used in the Print(…) 
function and two nested iterators are used in the PrintDuplicates(…) function: 
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 ITERATOR.CPP      � 
// TEST.CPP 
 
#include <iostream.h> 
#include "list.h" 
 
void Print(LIST &list) 
 
// Prints all elements in the list using one iterator. 
 
{ 
    LISTITER listiter(list); 
    apstring str; 
 
    while (listiter.NextData(str)) 
        cout << str << ' '; 
    cout << endl;     
} 
 
//**************************************************************** 
 
void PrintDuplicates(LIST &list) 
 
// Prints all those elements in the list that have duplicates 
//   by using two nested iterators. 
 
{ 
    cout << "Duplicates:\n"; 
 
    LISTITER listiter1(list); 
    apstring str1, str2; 
 
    while (listiter1.NextData(str1)) { 
        LISTITER listiter2 = listiter1; 
        while (listiter2.NextData(str2)) { 
            if (str1 == str2) { 
                cout << '[' << str1 << ']' << endl; 
                break;     // Break from the inner while loop. 
            } 
        } 
    } 
} 
 
//**************************************************************** 
 

Continued    ® 
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int main() 
 
{ 
    LIST list; 
 
    list.Insert("a");  // Automatic cast from const char* to 
                       //   apstring.  Calls the apstring(const char*) 
                       //   constructor. 
    list.Insert("rose"); 
    list.Insert("is"); 
    list.Insert("a"); 
    list.Insert("rose"); 
    Print(list); 
    cout << endl; 
 
    PrintDuplicates(list); 
    return 0; 
} 

 
The program generates the following output: 
 

a rose is a rose                                                      � 
 
Duplicates: 
[a] 
[rose] 

 

21.8 Static Class Members 
 
C++ lets you declare some data members of a class as static.  Static members share 
the same memory for all instances of the class (i.e., for all declared variables of the 
class type).  We can say that static members belong to the class as a whole, not to 
its specific instances. 
 
In addition to data members, member functions can be declared static, 
too.  Unlike regular member functions, these functions can be called 
without attributing them to a specific class instance.  For that reason, 
static functions can access and manipulate only static data members. 

 
You can declare a member static by using the keyword static in its declaration.  
Both private and public members may be declared static.  The following class for a 
mock soda vending machine declares a static data member, mPrice, and a static 
member function SetPrice(…): 
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// SODA.H 
 
class SODA {    // Soda vending machine 
 
  public: 
 
    static void SetPrice(int price); 
 
    SODA(); 
    void SellSoda(); 
    int GetDayTotal(); 
 
  private: 
 
    static int mPrice; 
    int mDayTotal; 
}; 

 
This example demonstrates one of the more obvious uses of static members: 
defining a constant or a variable that has to be shared by all instances of the class, 
in this example the price of a can of soda. 
 
A static data member cannot be initialized inside the class definition or in the 
constructor, because the constructor is called for every instance of the class.  
Instead, it is initialized separately in the source file, as follows: 
 
// SODA.CPP 
 
#include "soda.h" 
 
int SODA::mPrice = 60; 
 
void SODA::SetPrice(int price) 
{ 
    mPrice = price; 
} 
 
SODA::SODA() : mDayTotal(0) 
{} 
 
void SODA::SellSoda() 
{ 
    mDayTotal += mPrice; 
} 
 
int SODA::GetDayTotal() 
{ 
    return mDayTotal; 
} 

 
This is how this class works in a test program: 
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// TEST.CPP 
 
#include <iostream.h> 
#include <iomanip.h> 
#include "soda.h" 
 
int main() 
 
{ 
    SODA machine1, machine2; 
 
    SODA::SetPrice(75); // Sets the price for all machines (cents) 
 
    int can; 
    for (can = 0;   can < 100;  can++) 
        machine1.SellSoda(); 
    for (can = 0;   can < 50;  can++) 
        machine2.SellSoda(); 
 
    double dollars = 
        .01 * machine1.GetDayTotal() + 
        .01 * machine2.GetDayTotal(); 
 
    cout << setprecision(2) 
         << setiosflags(ios::fixed | ios::showpoint) 
         << "Day's sales: $" << dollars << endl; 
 
    return 0; 
} 

 
A public static member can be accessed through any instance of the class.  We 
could write: 
 
// TEST.CPP 
 
    ... 
int main() 
 
{ 
    SODA machine1, machine2; 
 
    machine1.SetPrice(75); 
    ... 
} 

 
This usage would be misleading, though, because it would suggest that the price 
was set only for machine1 and would obscure the fact that the same price had 
been set for all “machines.”  That is why we wrote: 
 
    SODA::SetPrice(75); 
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Now suppose we want to count total sales for all active soda machines 
automatically.  We can add a static member, say, mGrandTotal, to the SODA class 
and increment it for every sale.  At the end it will contain the total of all sales from 
all machines: 
 
// SODA.H 
 
class SODA {    // Soda vending machine 
 
  public: 
 
    static int mGrandTotal; 
    ... 
}; 
 
// SODA.CPP 
 
#include "soda.h" 
 
... 
int SODA::mGrandTotal = 0; 
 
... 
 
void SODA::SellSoda() 
{ 
    mDayTotal += mPrice; 
    mGrandTotal += mPrice; 
} 
... 

 
// TEST.CPP 
 
... 
int main() 
 
{ 
    ... 
    cout << "Total for all machines " <<  
         << .01 * SODA::mGrandTotal << endl; 
    ... 
} 

a a a 

A less obvious use of static members is for allocating some temporary shared work 
space, for example a large array, especially for use in a recursive member function.  
Static members may also be used for more esoteric tasks related to the 
management of the class as a whole.  Suppose we want to count all currently 
existing instances of a class.  This can be done with a static counter: 
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// SOMECLASS.H 
 
class SOMECLASS { 
 
  private: 
 
    static int nObjects; 
    ... 
  public: 
 
    static int NumberOfObjects() {return nObjects;} 
 
    SOMECLASS() {     // Constructor 
        nObjects++; 
        ... 
    } 
 
    ~SOMECLASS() {    // Destructor 
        ... 
        nObjects––; 
    } 
    ... 
}; 

 
 
// SOMECLASS.CPP 
 
int SOMECLASS::nObjects = 0; 
... 

 
// TEST.CPP 
 
#include <iostream.h> 
 
int main() 
 
{ 
    SOMECLASS object1, object2; 
 
    cout << SOMECLASS::NumberOfObjects() << " objects\n"; 
                             // Output: "2 objects" 
 
    if (SOMECLASS::NumberOfObjects() == 2) { 
        SOMECLASS object3; 
        cout << SOMECLASS::NumberOfObjects() << " objects\n"; 
                                 // Output: "3 objects" 
    } 
 
    cout << SOMECLASS::NumberOfObjects() << " objects\n"; 
                             // Output: "2 objects" 
    return 0; 
} 
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21.9 Efficiency and Design Considerations 
 
In C++ the syntax for using user-defined class types is often the same as for 
built-in data types.  This convenience and simplicity may be deceptive, because 
short code may actually hide a lot of activity.  An innocent-looking declaration or 
return statement may trigger a call to a complicated constructor.  The same thing 
may happen when an automatic cast is implied in an expression or a function call. 
 
As we have seen, a class variable declared within a loop calls its constructor and 
destructor on every pass through the loop. 
 
Some C++ programmers enjoy simplifying the interfaces to their classes.  They 
may use many overloaded member functions and operators with many default 
arguments. To some extent, this defeats the use of function prototypes for 
argument checking in function calls. 
 
Overloaded operators may also deceive the class user because a simple + or = may 
have a lot of code hidden behind it. 
 
Suppose you want to read lines from a file and display them, adding five stars in 
front of each line.  You code a trivial function: 
 
apstring AddStars(const apstring &line) 
 
{ 
    return "*****" + line; 
} 

 
Then you call it from your main program: 
 
int main() 
{ 
    apstring line; 
    ... 
    while (getline (file, line)) 
        cout << AddStars(line) << endl; 
    ... 
} 

 
This style of programming is very tempting because it produces short and clear 
code; it is fine as long as you are dealing with short strings, or perform the 
operation only once, or if performance is not an issue.  But if your task is to sort a 



396 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

large text file, this kind of “neat” code will quickly turn your quicksort algorithm 
into a “slowsort” program. 
 
Consider what happens in the AddStars(…) function.  First it calls the constructor 
apstring(const char *) in order to convert "*****" into an apstring 
object.  This is necessary if your apstring class does not provide an overloaded 
form of the + operator that can handle char* arguments directly.  This constructor 
creates a temporary apstring object and copies "*****" into its character 
buffer.  Then the + operator kicks in.  It creates another temporary apstring 
object, with a buffer large enough to contain the concatenated strings, and copies 
characters from both strings into it.  We are lucky if the + operator is coded 
efficiently.  In a “quick and dirty” implementation the + operator may call other 
operators (e.g., =, +=), which, in turn, copy the strings several times.  Finally, the 
return statement in AddStars(…) calls the apstring copy constructor, which 
copies the apstring object (and its character buffer) once more. 
 
In this example, we can simply avoid the + operator: 
 
    while (getline (file, line)) 
        cout << "*****" << line << endl; 

 
In a real-world project we might have to re-examine the apstring class to see if 
we should add new features or re-implement the apstring class to make it more 
efficient.  If performance is critical, we might have to do without apstring 
altogether and instead write low-level code based on built-in arrays and null-
terminated strings. 
 

21.10 Summary 
 
It is desirable that user-defined types in C++ behave similarly to built-in types.  In 
particular, a well-defined C++ class has to support simple declarations, 
assignments and initializations.  This is achieved by defining a default constructor, 
a copy constructor, and an overloaded assignment operator for your class.  These 
“canonical” features are especially important when working with templated classes 
such as apvector and apmatrix, because these classes expect their elements to 
have the appropriate copy constructor and assignment operator. 
 
Sometimes it is also convenient to have appropriate arithmetic operators and 
stream I/O operators for user-defined types.  These operators are implemented as 
overloaded class members or free-standing overloaded operators. 
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A C++ programmer can declare some functions and classes friends to his class.  
Friend functions and all member functions in friend classes have access to all 
private members of the class.  One group of useful friend functions are overloaded 
free-standing operators, such as << and >> for stream I/O.  Another useful friend is 
an iterator class, which works together with a class that contains a list and helps 
implement iterations over the elements of the list. 
 
Static data members share the same memory for all instances of the class.  They 
may be used for representing constants or variables common to all class objects, 
for temporary work buffers, or for more esoteric class management tasks such as 
counting the number of existing instances of a class.  Static member functions 
manipulate static data members of the class. 
 
If performance is important, you must have a fairly good understanding of your 
own classes and of the standard classes that you are using in your project.  C++ is 
deceptive: it may hide a lot of processing and many implicit calls to constructors 
behind very concise code. 
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22.1 Discussion 
 
A tree is a branching hierarchical structure in which each element except the top 
one has a link to exactly one element higher in the hierarchy called its parent 
(Figure 22-1).  The elements of a tree structure are referred to as nodes.  The top 
node in the structure is called the root of the tree.  Any node in the tree may be 
connected to one or more nodes lower in the hierarchy, called its children.  The 
nodes that have no children are called leaves.  There is exactly one path from the 
root to any node.  The intermediate nodes in this path are referred to as the node's 
ancestors (i.e., its parent, the parent of its parent, etc.).  Trees may not have 
circular paths. 
 

                        Root

       Leaves
 

 
Figure 22-1.   A tree structure 

 
 
As you can see, computer books normally show trees “growing” down, with the 
root shown on top.  This convention probably reflects the fact that we read from 
the top of the page down and also process trees starting from the root.  Trees may 
be used for representing branching systems or processes, such as organizational 
charts, game strategies (Figure 22-2), diagnostic procedures, and other hierarchies 
of objects.  Figure C-1 in Appendix C, for example, shows the inheritance tree of 
the derived stream I/O classes in C++. 
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Figure 22-2.   Common uses of tree structures 
 
 
All nodes in a tree can be arranged in layers with the root at level 0, its children at 
level 1, their children at level 2, and so on.  The level of a node is equal to the 
length of the path from the root to that node.  The total number of levels is called 
the height or the depth of the tree (Figure 22-3). 
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                        .......... Level 0

                        .......... Level 1

                              .... Level 2

                                   Level 3

                             ..... Level 4

                          Height = 5
 

 
Figure 22-3.   Arrangement of tree nodes in levels 

 
 
One important property of trees is that we can arrange a relatively large number of 
elements in a relatively shallow (having a small number of levels) tree.  For 
example, if  each node in a tree (except the last level) has two children, a tree with 
h levels contains 2h–1 nodes (Figure 22-4).  Such a tree with 20 levels contains 
over one million nodes.  This property may be utilized for quick searching, data 
retrieval, decision trees, and similar applications where, instead of going through 
the whole list and examining all the elements, we can go down the tree and 
examine just a few.  (In strategy games, this property works exactly in reverse and 
becomes a major stumbling block: if we consider all the possible responses to a 
given move, then all the responses to those responses, etc., the tree of possible 
game paths grows so fast that it is not feasible to plan ahead beyond a few moves.) 
 
A list can be viewed as a special case of a tree where the first node is the root, the 
last node is the only leaf, and all other nodes have exactly one parent and one 
child.  A list has only one node at each level.  If a tree degenerates into a near-
linear shape with only a few nodes at each level, its advantages for representing a 
large number of elements in a shallow structure are lost. 
 
A tree is an inherently recursive structure, because each node in a tree can itself be 
viewed as the root of a smaller tree (Figure 22-5).  In computer applications, trees 
are normally represented in such a way that each node “knows” where to find all 
its children.  In the linked representation, for example, each node, in addition to 
some information, holds the list of pointers to its children.  Knowing just the root, 
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we can find all the elements of the tree; and given any node we can find all the 
nodes in its subtree. 
 

                                        Tree    Total
                                       Height   Nodes

               1             ..........  1         1

          2          3          .......  2         3

      4     5      6    7         .....  3         7

                                   ....  4        15
     8   9 10  11 12  13 14  15
                                         ...        ...

                                         h       2h-1
 

 
Figure 22-4.   A shallow tree can hold many nodes 

 
 

 
 

Figure 22-5.   Each node in a tree is a root of its own subtree 
 
 
The recursive branching structure of trees suggests the use of recursive procedures 
for dealing with them.  The following function, for example, allows us to “visit” 
each node of a tree, a process known as tree traversal: 
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void Traverse (NODE *root) 
 
{ 
    // Base case: root == 0, the tree is empty –– do nothing 
    // Recursive case: tree is not empty 
    if (root != 0) { 
        Visit(root); 
        for (... <each child of the root>) 
            Traverse (<that child's subtree>); 
    } 
} 

 
This function first “visits” the root of the tree, then, for each child of the root, calls 
itself recursively to traverse that child's tree.  The recursion stops when it reaches a 
leaf: all its children's trees are empty.  Due to the branching nature of the process, 
an iterative implementation of this function would require your own stack and 
would be quite cumbersome.  In this example, the recursive implementation may 
actually be slightly more efficient in terms of the processing time, and does not 
take too much space on the system stack because the depth of recursion is the same 
as the depth of the tree, which is normally a relatively small number.  The major 
advantage of a recursive procedure is that it yields clear and concise code. 
 
A tree in which each node has no more than two children is called a binary tree.  
The children of a node are referred to as the left child and the right child.  In the 
following sections we will deal exclusively with binary trees.  We will see how a 
binary tree can be used as a binary search tree and as a heap. 
 

22.2 Binary Search Trees 
 
A binary search tree (BST) is a structure for holding a set of ordered data elements 
in such a way that it is easy to find any specified element and easy to insert and 
delete elements.  As we saw in Part 1 (Section 9.3),  if we have a sorted array of 
elements, the “divide and conquer” binary search algorithm allows us to find any 
element in the array quickly.  We take the middle element of the array, compare it 
with the target value and, if they are not equal, continue searching either in the left 
or the right half of the array, depending on the comparison result.  This process 
takes at most log2 n operations for an array of n elements.  Unfortunately, inserting 
elements into the array or deleting them from the array is not easy — we may need 
to shift large blocks of data in memory.  The linked list structure, on the other 
hand, allows us to insert and delete nodes easily, but there is no quick search 
method because there is no way of getting to the middle of the list easily.  Binary 
search trees combine the benefits of arrays for quick searching and the benefits of 
linked lists for inserting and deleting elements. 
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As the name implies, a binary search tree is a kind of a binary tree: each node has 
no more than two children.  The children are called the left and right child, and the 
subtrees that “grow” from them are called left and right subtrees.  The tree’s nodes 
contain some data elements for which a relation of order is defined; that is, for any 
two elements we can say whether the first one is greater, equal, or smaller than the 
second.  The elements may be numbers, alphabetized strings, some database record 
index keys, and so on.  Sometimes we informally say that one node is greater or 
smaller than another, actually meaning that that relationship applies to the data 
elements they contain. 
 
What makes this tree a binary search tree is the following special property: for any 
node, the element in the node is larger than all elements in this node's left subtree 
and smaller than all elements in this node's right subtree (Figure 22-6). 
 
A binary search tree is specifically designed to support the “divide and conquer” 
method.  Suppose we need to find a target element.  First, we compare the target to 
the root.  If they are equal, the element is found.  If the target is smaller, we 
continue the search in the left subtree.  If larger, we go to the right subtree.  We 
will find the target element (or assert that it is not in the tree) after a number of 
steps which never exceeds the number of  levels in the tree.  If our tree is rather 
“bushy,” with intermediate levels filled to near capacity with nodes, the number of 
steps required will be close to log2 n, where n is the total number of nodes. 
 
 
 

                                                      A ... Z

                                                  M
                                A ... L                   N ... Z

                            F                                       S
             A ... E           G ... L            N ... R          T ... Z

                C                I                       P               V

 
Figure 22-6.   The ordering property of a binary search tree 
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In a binary search tree, it is also easy to find the smallest and the largest element.  
Starting at the root, if we always go left for as long as possible, we come to the 
node containing the smallest element.  If we always keep to the right, we come to 
the node containing the largest element (Figure 22-7).  The smallest node, by 
definition, cannot have a left child, and the largest node cannot have a right child. 

a a a 

In this section we implement a binary search tree as a linked structure and discuss 
the operations for finding, inserting and removing a node.  We also discuss 
different ways to traverse a binary tree.  Although a binary search tree could be 
implemented as a C++ class, we have chosen not to do this for technical reasons 
that are explained later in this chapter. 
 

                                                               27

                                     17                                                37

              MIN                                                                            MAX

                        7                 19                                  33                51

                           9                      23                  31        34      40
 

 
Figure 22-7.   Location of the smallest and the largest elements in a BST 

 
 
The easiest way to access a binary tree is through one pointer to its root node.  But 
first we have to define a structure for each node: 
 
struct TREENODE { 
    SOMETYPE data; 
    TREENODE *left; 
    TREENODE *right; 
}; 
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SOMETYPE is the data type of the information stored in nodes.  We will use 
apstring in our examples. 
 
Note the self-referential property of this definition: the TREENODE structure 
contains two pointers to structures of the same type, left and right, which 
represent its children.  A null value indicates that there is no corresponding child. 
 
Let us call a pointer to the root node of the tree root: 
 
    TREENODE *root; 

 
An empty tree can be declared simply as a root pointer equal to null: 
 
    TREENODE *root = 0;         // Declare an empty tree. 

 
root has a dual role: it points to the root node, and it also points to the whole tree.  
This is especially convenient for recursive treatment, because a subtree can be 
addressed directly as its root node.  For example, the left subtree of the tree root 
can be addressed simply as root–>left.  A null value in left or right means 
that the corresponding subtree is empty. 
 
In the linked implementation new nodes of the tree will be dynamically allocated 
using the new operator, so the tree must be explicitly destroyed at the end.  For that 
purpose we  need the Destroy() function: 
 
void Destroy(TREENODE *root); 

 
The find, insert, and remove operations can be implemented as the following 
functions: 
 
TREENODE *Find(TREENODE *root, const apstring &data); 
bool Insert(TREENODE* &root, const apstring &data); 
bool Remove(TREENODE* &root, const apstring &data); 

 
Note that the Insert(…) and Remove(…) functions may change the root of the 
tree, so root is passed to them by reference.   
 
For the binary search tree, we assume that relational operators (<, <=, ==, etc.) are 
defined for information elements stored in nodes.  We also assume that the 
assignment operator works.  The apstring type meets these requirements. 
 
The above definitions are collected in the header file TREE.H: 
 



408 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

  TREE.H                  � 
// TREE.H 
 
#ifndef _TREE_H_ 
#define _TREE_H_ 
 
#include "apstring.h" 
 
struct TREENODE { 
    apstring data; 
    TREENODE *left; 
    TREENODE *right; 
}; 
 
void Destroy(TREENODE *root); 
TREENODE *Find(TREENODE *root, const apstring &target); 
bool Insert(TREENODE* &root, const apstring &data); 
bool Remove(TREENODE* &root, const apstring &data); 
 
#endif // _TREE_H_ 

 
 

22.3 BST's Destroy, Find, and Insert 
Functions 

 
These functions are implemented recursively here.  We will also discuss an 
iterative implementation of Find(…). 
 
The first step in a recursive implementation is to ascertain that the tree is not empty 
(i.e., root != 0).  This is very important because it is the base case (or, as some 
people say, the stopping case) in a recursive function.  The recursion stops when 
we reach a null pointer in the tree. 
 
Let us begin by looking at the Destroy(…) function, which is the shortest: 
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  TREE.CPP             � 
// TREE.CPP 
 
#include "tree.h" 
 
void Destroy(TREENODE *root) 
 
{ 
    // Base case 0: the tree is empty –– do nothing; 
    if (root) {  // Recursive case: 
        Destroy(root–>left); 
        Destroy(root–>right); 
        delete root; 
    } 
} 

 
The best way to understand how this function works is to prove its correctness 
using the method of mathematical induction, explained in Section 19.5.  In the 
base case of an empty tree, there is nothing to do, so the function works.  Let us 
assume (inductive hypothesis) that this function works for any tree of depth less 
than some integer h greater or equal to 1.  Based on that assumption, let us prove 
that it also works for any tree of the depth h.  Suppose our tree has the depth h.  
Then left and right subtrees both have depths smaller than h.  Therefore, by the 
induction hypothesis,  
 
        ... 
        Destroy(root–>left); 
        ... 

 
 correctly deletes all nodes in the left subtree, and 
 
        ... 
        Destroy(root–>right); 
        ... 

 
 correctly deletes all nodes in the right subtree. 
 
  Finally, 
 
        ... 
        delete root; 
        ... 

 
deletes the root node.  So the function correctly deletes all nodes in the tree.  
Mathematical induction shows that this function works for a binary tree of any 
depth. 
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Unfolding  this recursive function in order to see “exactly how it works” (e.g., in 
what order it actually removes the nodes) may be a good exercise... in frustration.  
What is important, though, is that at each recursive step we deal with a tree of 
smaller depth, so the maximum depth of recursion is equal to the depth of the tree 
(usually a reasonably small number), and not the total number of nodes in the tree 
(which may be a very large number). 

a a a 

In general, recursive functions for dealing with trees work in the following way.  
The first step (base case 0) is to check whether the tree is empty.  Another base 
case is needed when we are looking for a target node and find it right at the root of 
the tree.  The rest of the cases are recursive: we apply the same function to the left 
or right subtree, or both. 
 
If we are looking for a target in a binary search tree, we go left if the target is 
smaller than the data at the root of the tree and right otherwise.  Finally, at some 
depth of recursion, we find the correct node.  This node is at the root of some 
subtree of the original tree, but at that level of recursion it appears to us at the root 
of the tree currently being considered.   
 
The Find(…) function, which returns the pointer to a node that contains a data 
element equal to the target value, is a good example: 
 

  TREE.CPP              � 
TREENODE *Find(TREENODE *root, const apstring &target) 
 
// Finds the node such that node–>data == target. 
// Returns the pointer to the found node, or 0 if not found. 
 
{ 
    if (!root)     // Base case 0: the tree is empty. 
        return 0; 
 
    if (target == root–>data) 
        return root; 
 
    else if (target < root–>data)         // Recursive case: search 
        return Find(root–>left, target);  //   left subtree. 
 
    else // if (target > root–>data)      // Recursive case: search 
        return Find(root–>right, target); //   right subtree. 
} 

 
In this function we do not visit all the elements of the tree, but recursively build a 
path from the root to the element we are looking for.  The branching is conditional: 
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at every node we either go left or right, but not both.  So the process is essentially 
linear.  This suggests that there must be a simple iterative solution as well.  The 
iterative version is, indeed, as short as the recursive one: 
 

  TREE.CPP              � 
TREENODE *Find(TREENODE *root, const apstring &target) 
 
// *** Iterative version *** 
 
{ 
    while (root && target != root–>data) { 
        if (target < root–>data) 
            root = root–>left; 
        else // if (target > root–>data) 
            root = root–>right; 
    } 
    return root; 
} 

 
The iterative version of Find(…) is preferable to the recursive one, because it is 
more efficient and equally clear. 

a a a 

In the Insert(…) function, the new node is always inserted as a leaf.  We go all 
the way down the tree to find an empty slot in the proper place and insert the new 
node there.  Note that root is passed to the Insert(…) function by reference, so 
the variable that we pass down the line is actually a reference to a pointer to a 
node. 
 

  TREE.CPP             � 
bool Insert(TREENODE* &root, const apstring &data) 
 
// Creates a new node with node–>data = data and inserts 
//   it into the proper place in the tree. 
// Returns true if successful, false if cannot 
//    allocate a new node. 
 
{ 
    if (!root) { // Base case 0: the tree is empty. 
 
        // Allocate a new node and set the root 
        //   equal to the new node: 
 
        TREENODE *newnode = new TREENODE; 

Continued    ® 
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        if (!newnode) 
            return false; 
        newnode–>data = data; 
        newnode–>left = 0; 
        newnode–>right = 0; 
        root = newnode; 
        return true; 
    } 
 
    if (data == root–>data) // Base case: the element is already 
                            //   in the tree. 
        return true;        //   (Another version might report an error) 
 
    else if (data < root–>data)           // Recursive case: insert 
        return Insert(root–>left, data);  //   into the left subtree 
 
    else // if (data > root–>data)        // Recursive case: insert 
        return Insert(root–>right, data); //   into the right subtree 
} 

 
Paradoxically, it is easier to write this code than to understand why it works.  One 
may wonder how a new node can be appended to the tree without ever explicitly 
mentioning its parent.  The explanation is that the root of the tree is passed to 
Insert(…) by reference.  root–>left and root–>right are also passed by 
reference in the recursive calls.  At the bottom of the recursion when we finally 
come to the appropriate empty slot, root actually refers to a pointer — the left 
or right pointer — of some parent.  The value of that pointer is null.  The 
statement 
  
        root = newnode; 

 
replaces null with newnode. 
 

22.4 BST's Remove Function 
 
The Remove(…) function is more involved because it requires rearranging the 
nodes in the tree.  First we find the node we want to remove.  There are two 
possibilities: either the node has no more than one child, or  the node has both 
children. 
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                                                                                                      ...

               ...        ...       ...         ...

                                                                                    ...      ...

                        b)

                                                                                                       ...

              ...        ...       ...          ...

                                                                                    ...        ...

                                                                                                                                   

At the top level
of recursion
root refers to
this pointer.

At some level of
recursion root
refers to this
pointer.

 
 
Figure 22-8.   Removing a node with only one child from a binary search tree 
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                      a)

                                ...           ...                                             ...

                                                  ...        ...

                                                                         MIN

                                                                                           ...     ...

                                                                                ...       ...

        b)                                                                                    c)

       ...            ...                                             ...              ...        ...                                ...
                                                                                                                                                MIN

                          ...        ...

                                                MIN

                                                                      ...     ...                                                                            ...      ...

                                                         ...      ...                                                               ...      ...

At some level of
recursion root
refers to this
pointer.

Find the smallest
node in the right
subtree of the
"root."

MIN can't have a
left child.
Unlink MIN and
reuse it as the
new "root."

 
 

 
Figure 22-9.   Removing a node with two children 
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In the first case, we can rearrange the pointers to bypass the node by appending its 
only child directly to the removed node's parent (Figure 22-8).  As an exercise, you 
can prove that the order property of the binary search tree still holds. 
 
The second case — when both the node's children are present — requires some 
extra work.  Our approach here is to replace the node with the smallest element of 
its right subtree (the same would work for the largest element of its left subtree).  
The order property of the binary search tree will still hold because the new node, 
coming from the right subtree, is larger than any node in the left subtree.  And 
since it is the smallest node in the right subtree, it is smaller than all remaining 
nodes there. 
 
As we mentioned earlier, we will find the node containing the smallest element of 
any tree by starting at the root and going left for as long as possible (see Figure 22-
7).  This node does not have a left child, so we can easily unlink it from the tree.  
We can put this node in place of the removed node to fill the gap (Figure 22-9).  
The method is implemented in the following recursive code: 
 

 TREE.CPP               � 
bool Remove(TREENODE* &root, const apstring &data) 
 
// Removes the node whose data element is equal to data. 
// Returns true if successful, false if cannot 
//    find the node. 
 
{ 
    if (!root) // Base case 0: the tree is empty. 
        return false; 
 
    if (data == root–>data) { 
        // Base case: 
        //   found the node. root refers to 
        //   the pointer to the node to be removed... 
 
        // Case 1: root has no more than one child. Replace root 
        //   pointer with the pointer to that child. 
        //   That unlinks the root node from the tree. 
        //   Then delete the node. 
 
        // First save root –– it points to the 
        //   node to be removed: 
 
        TREENODE *oldroot = root; 

Continued    ® 
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        if (root–>left == 0)       // No left child 
            root = root–>right; 
        else if (root–>right == 0) // No right child 
            root = root–>left; 
        if (oldroot != root) {     // If one of the above... 
            delete oldroot; 
            return true; 
        } 
 
        // Case 2: root has both children. 
        //   Find the smallest element  
        //   in the right subtree.  Unlink that element and 
        //   make it the new root. 
 
        // First find the smallest element in the right subtree. 
        //   To do that, keep going left as long as possible. 
        //   Also keep track of its parent 
 
        TREENODE *parent = root; 
        TREENODE *next = root–>right; 
        while (next–>left) { 
            parent = next; 
            next = next–>left; 
        } 
 
        // Unlink this node from the tree (it doesn't have 
        //   a left child, so we can connect its right child to its 
        //   parent) 
 
        if (parent == root) 
            root–>right = next–>right; 
        else 
            parent–>left = next–>right; 
 
        // Make this element the new root 
 
        next–>left = root–>left; 
        next–>right = root–>right; 
        delete root; 
        root = next; 
 
        return true; 
    } 
 
    else if (data < root–>data)           // Recursive case: remove 
        return Remove(root–>left, data);  //   from the left subtree 
 
    else // if (data > root–>data)        // Recursive case: remove 
        return Remove(root–>right, data); //   from the right subtree 
} 
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22.5 Binary Tree Traversals 
 
The process of “visiting” (performing some operation on) each node of a tree is 
called tree traversal.  The purpose of traversal is to process each node once.  
Traversal by itself is a very simple recursive procedure. 
 
Three commonly used ways to traverse a tree are called preorder, postorder, and 
inorder.  They differ in the sequence in which the nodes are visited.  In the code 
below, the Visit(…) function just prints out the node's data: 
 

 TESTTREE.CPP      � 
// TEST.CPP 
 
#include <iostream.h> 
#include "tree.h" 
 
inline void Visit (TREENODE *node) 
 
{ 
    cout << node–>data << ' '; 
} 
 
void TraversePreOrder(TREENODE *root) 
 
{ 
    if (!root) return; 
    Visit(root); 
    TraversePreOrder(root–>left); 
    TraversePreOrder(root–>right); 
} 
 
void TraversePostOrder(TREENODE *root) 
 
{ 
    if (!root) return; 
    TraversePostOrder(root–>left); 
    TraversePostOrder(root–>right); 
    Visit(root); 
} 
 
void TraverseInOrder(TREENODE *root) 
 
{ 
    if (!root) return; 
    TraverseInOrder(root–>left); 
    Visit(root); 
    TraverseInOrder(root–>right); 
} 
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In preorder traversal, we visit the root first, then process the left and right subtrees.  
In postorder traversal we process the subtrees first, then visit the root.  Finally, in 
inorder traversal, we process the left subtree, visit the root, then process the right 
subtree.  As an exercise, prove (using mathematical induction) that during an 
inorder traversal of a binary search tree, the data elements will be visited in 
ascending order. 
 
The Visit(…) function depends on what we want to do with the nodes.  We do 
not know in advance what “visiting” a node might entail.  This is discussed further 
in relation to implementing the “Tree” ADT as a class in the next section. 
 
In the following test program we start with an empty binary search tree, insert a 
few elements, and then traverse the tree in preorder, postorder and inorder: 
 

 TESTTREE.CPP      � 
int main() 
 
{ 
    TREENODE *root = 0; 
 
    Insert(root, "Mexico City"); 
    Insert(root, "Munich"); 
    Insert(root, "Montreal"); 
    Insert(root, "Moscow"); 
    Insert(root, "Los Angeles"); 
    Insert(root, "Seoul"); 
    Insert(root, "Barcelona"); 
    Insert(root, "Atlanta"); 
    Insert(root, "Sydney"); 
 
    cout << "Preorder:\n"; 
    TraversePreOrder(root); 
    cout << "\n\n"; 
 
    cout << "Postorder:\n"; 
    TraversePostOrder(root); 
    cout << "\n\n"; 
 
    cout << "Inorder:\n"; 
    TraverseInOrder(root); 
    cout << "\n\n"; 
 
    Destroy(root); 
    return 0; 
} 
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The program builds the following binary search tree: 
 
                 Mexico City 
                 /         \ 
                /           \ 
          Los Angeles      Munich 
             /            /      \ 
       Barcelona      Montreal   Seoul 
           /              \         \ 
     Atlanta             Moscow    Sydney 
 
It produces the following output: 
     

Preorder:                                                            � 
Mexico City Los Angeles Barcelona Atlanta Munich Montreal Moscow Seoul Sydney  
 
Postorder: 
Atlanta Barcelona Los Angeles Moscow Montreal Sydney Seoul Munich Mexico City  
 
Inorder: 
Atlanta Barcelona Los Angeles Mexico City Montreal Moscow Munich Seoul Sydney  
 

The preorder traversal reaches the root first; the postorder, last.  The inorder 
traversal, as expected, produces the output sorted (alphabetically) in ascending 
order. 
 
The shape of the tree depends on the order in which the elements are inserted.  If 
we start with the largest or smallest element it will be placed in the root and one 
entire subtree will remain empty.  In real applications, the order of inserting 
elements may be randomized.  There are also special algorithms for balancing a 
binary search tree, which make the tree and its subtrees as symmetrical as possible.  
These issues are outside the scope of this book. 
 

22.6 Implementing Tree as a Class 
 
The tree structure can be implemented as a class.  The first approach would be 
simply to convert the TREENODE structure into a class and to make Find(…), 
Insert(…), and Remove(…) its member functions.  Insert(…) and Remove(…) 
cannot pass the class object by reference, but we could get around that by making 
them return the new root pointer.   Still, this would be a somewhat unusual class.  
The user would address the class instances only through pointers, and the new 
instances would be created only in member functions, so the constructor would be 
declared private.  The destructor would do nothing, but we would have to use a 
recursive Destroy(…) member function: 
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TREENODE::~TREENODE() 
 
{ 
    if (this) { 
        left–>Destroy(); 
        right–>Destroy(); 
        delete this; 
    } 
} 

 
(For an explanation of this see Chapter 21.) 
 
A more conservative approach is to encapsulate the root node in a new class: 
 
class TREE { 
 
    ... 
  private: 
 
    TREENODE *mRoot; 
    ... 
}; 

 
The difficulty here is that the member functions Find(…), Insert(…), etc., do 
not take root as an argument because it is a member, but their recursive versions 
should.  We would need recursive “helper” functions to actually do the finding and 
inserting: 
 
TREENODE *TREE::Find(const apstring &data) 
{ 
    return RecursiveFind(mRoot, data); 
} 

 
This is a bit cumbersome. 
 
The biggest hurdle in both approaches is traversals.  We have seen that the 
traversal code itself takes three lines, but how would the class know what the 
“visit” procedure is?  With linked lists, this problem can be solved using iterators 
(see Section 21.7).  With trees it is much easier to implement traversals recursively 
than iteratively, but in a recursive implementation iterators do not apply.  We can 
include various “visit” functions inside the class, but then it will lose its generality.  
We could also leave traversals outside the class and make root public or provide 
an access function for it, but then the whole tree would become accessible outside 
the class, which would defeat the purpose of the class. 
 
It is also possible to pass the “visit” function to the Traverse(…) member 
functions as an argument (a callback function).  That would retain some level of 
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generality for the class.  This approach takes us into unexplored territory, but you 
can make it work as an exercise.  You can use the following definitions: 
 

 TREE_CLS.CPP     � 
// TREE.H 
// ====== 
 
#ifndef _TREE_H_ 
#define _TREE_H_ 
 
#include "apstring.h" 
 
struct TREENODE { 
    apstring data; 
    TREENODE *left; 
    TREENODE *right; 
}; 
 
typedef void CALLBACK(TREENODE *node); 
    // Defines the CALLBACK data type as a function which takes one 
    //   argument of the type TREENODE *... 
 
class TREE { 
 
  public: 
 
    TREE() {       // Default constructor 
        mRoot = 0; 
    } 
 
    bool Insert(const apstring &data) { 
        return RecursiveInsert(mRoot, data); 
    } 
 
    void TraverseInOrder(CALLBACK Visit) { 
        RecursiveTraverseInOrder(mRoot, Visit); 
    } 
    ... 
    ~TREE() { 
        Destroy(mRoot); 
    } 
 
  private: 

Continued    ® 
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    TREENODE *mRoot; 
 
    // recursive "helper" functions: 
    bool RecursiveInsert(TREENODE* &root, const apstring &data); 
    void RecursiveTraverseInOrder(TREENODE *root, CALLBACK Visit); 
    ... 
    void Destroy(TREENODE *root); 
 
}; 
 
#endif // _TREE_H_ 
 
 
// TREE.CPP 
// ======== 
 
#include "tree.h" 
 
bool TREE::RecursiveInsert(TREENODE* &root, const apstring &data) 
 
{ 
    ... 
} 
 
void TREE::RecursiveTraverseInOrder(TREENODE *root, CALLBACK Visit) 
 
{ 
    if (!root) return; 
    RecursiveTraverseInOrder(root–>left, Visit); 
    Visit(root); 
    RecursiveTraverseInOrder(root–>right, Visit); 
} 
 
... 
 
void TREE::Destroy(TREENODE *root) 
 
{ 
    if (root) { 
        Destroy(root–>left); 
        Destroy(root–>right); 
        delete root; 
    } 
} 
 

Continued    ® 
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// TEST.CPP 
// ======== 
 
#include <iostream.h> 
#include "tree.h" 
 
static void Visit (TREENODE *node) 
 
{ 
    cout << node–>data << ' '; 
} 
 
int main() 
 
{ 
    TREE tree; 
 
    tree.Insert("Mexico City"); 
    ... 
    tree.Insert("Sydney"); 
 
    cout << "Inorder:\n"; 
    tree.TraverseInOrder(Visit); 
    cout << endl; 
    return 0; 
} 

 
 

22.7 Lab: Morse Code 
 
Morse Hall, the Mathematics Department building at Phillips Academy, Andover, 
Massachusetts, is named after Samuel F. B. Morse, who graduated from the 
academy in 1805. 
 
In 1838, Samuel Morse devised a signaling code for use with his electromagnetic 
telegraph.  The code used two basic signaling elements:  the “dot,” a short-duration 
electric current, and the “dash,” a longer-duration signal.  The signals lowered an 
ink pen mounted on a special arm, which left dots and dashes on the strip of paper 
moving beneath.  Morse's code gained wide acceptance and, in its international 
form, is still in use.  (Samuel Morse also achieved distinction as an artist, 
particularly as a painter of miniatures, and between 1826 and 1845 served as the 
first president of the National Academy of Design.) 
 
In this project, we will simulate a telegraph station that can encode messages from 
text to Morse code and decode the Morse code back to text.  The encoding is 
accomplished simply by looking up a symbol in a list and copying its Morse code 
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into the output string.  The decoding is implemented with the help of a binary 
“decoding” tree.  Morse code for each letter represents a path from the root of the 
tree to some node: a “dot” means go left, and a “dash” means go right.  The node at 
the end of the path contains the symbol corresponding to the code. 
 
The station is implemented as a class TELEGRAPH defined in the MORSE.H header 
file.  The class contains two static data members: mHead is a pointer to the linked 
list of Morse codes for encoding, and mRoot is the pointer to the decoding tree.  
The static member function Open() builds the list and the tree and Close() 
destroys them.  Encode(…) and Decode(…) convert text to Morse code and vice 
versa.  Symbols are separated in the Morse code string by one space and words by 
two spaces. 
 
Fill in the blanks and test the program: 
 

  MORSE.H              � 
// MORSE.H 
 
#ifndef _MORSE_H_ 
#define _MORSE_H_ 
 
#include "apstring.h" 
#include "apvector.h" 
 
struct LNODE {              // Node of the Morse Code encoding list 
    char symbol; 
    apstring code; 
    LNODE *next; 
 
    LNODE(char c, const apstring &str) 
        : symbol(c), code(str), next(0) {}       // Constructor 
}; 
 
struct TNODE {              // Node of the Morse Code decoding tree 
    char symbol; 
    TNODE *left; 
    TNODE *right; 
 
    TNODE() : symbol('*'), left(0), right(0) {}  // Constructor 
}; 
 

Continued    ® 
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class TELEGRAPH { 
 
    // This is an unusual class: it has only static data members–– 
    //   mHead, the head of the encoding list, and mRoot, the root 
    //   of the decoding tree.  These list and tree are the same for all 
    //   class instances. 
    // 
    //   Such class doesn't need a constructor or destructor because they 
    //   wouldn't be able to deal with static members, anyway.  Instead 
    //   the list and the tree are initialized in the static member 
    //   function Open() and destroyed in the static function Close(). 
 
  public: 
 
    static void Open(); 
    static void Close(); 
 
    void Encode(const apstring &text, apstring &morse); 
    void Decode(const apstring &morse, apstring &text); 
 
  private: 
 
    static void RecursiveDestroy(TNODE *root); 
    static void Insert(char symbol, const apstring &morsecode); 
 
    static LNODE *mHead;        // The head of the decoding list. 
    static TNODE *mRoot;        // The root of the decoding tree. 
}; 
 
#endif _MORSE_H_ 

 
 
 

  MORSE.CPP        � 
// MORSE.CPP 
 
#include <ctype.h> 
#include "morse.h" 
 
static const char DOT = '.'; 
static const char DASH = '–'; 
 
LNODE *TELEGRAPH::mHead = 0; 
TNODE *TELEGRAPH::mRoot = 0; 
 
//**************************************************************** 
 

Continued    ® 
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void TELEGRAPH::Open() 
 
// Builds the encoding list and decoding tree for TELEGRAPH. 
 
{ 
    // Create the mHead node: 
    mHead = new LNODE(' ', "");   // A space char is encoded as 
                                  //   the empty string. 
 
    // Create the mRoot node: 
 
    mRoot = new TNODE; 
    if (!mRoot) return; 
    mRoot–>symbol = ' '; 
 
    // Add codes to the encoding list and decoding tree: 
 
    Insert ('A', ".–"); 
    ... ( in the file on disk) 
    Insert ('Z', "––.."); 
    Insert ('0', "–––––"); 
    ... 
    Insert ('9', "––––."); 
    ... 
    Insert ('?', "..––.."); 
} 
 
void TELEGRAPH::Close() 
 
// Destroys the encoding list. 
// Destroys the decoding tree by calling the recursive helper function. 
 
{ 
    // Destroy the encoding list: 
    ... 
    ... 
 
    // Destroy the decoding tree: 
    RecursiveDestroy(mRoot); 
    mRoot = 0; 
} 
 
//**************************************************************** 
 
void TELEGRAPH::RecursiveDestroy(TNODE *root) 
 
{ 
    ... 
    ... 
} 
 

Continued    ® 
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void TELEGRAPH::Insert (char symbol, const apstring &morsecode) 
 
// Inserts a symbol and its Morse code into the encoding list 
//   and decoding tree. 
//   Each Morse code character will correspond to a path in the tree 
//   from the root to a node: at a "dot" go left, at a "dash" go 
//   right.  The node at the end of the path holds the symbol 
//   for that character. 
 
{ 
    // Append a new node at the end of the encoding list: 
 
    LNODE *lnode; 
 
    lnode = mHead; 
    while (lnode–>next) 
        lnode = lnode–>next; 
    lnode–>next = new LNODE(symbol, morsecode); 
                       
    // Insert a new node into the decoding tree: 
 
    int i, len = morsecode.length(); 
    TNODE *tnode = mRoot; 
 
    for (i = 0;   i < len;   i++) { 
        if (morsecode[i] == DOT) { 
            ... 
            ... 
        } 
        else { // if (morsecode[i] == DASH) 
            ... 
            ... 
        } 
    } 
    tnode–>symbol = symbol; 
} 
 
//**************************************************************** 
 
void TELEGRAPH::Encode(const apstring &text, apstring &morse) 
 
// Converts text into Morse code. 
 
{ 
    int i, len = text.length(); 
    LNODE *lnode; 
    char ch; 
 
    morse = "";                        // Make the morse string empty; 
 
    for (i = 0;   i < len;   i++) { 
        ch = toupper(text[i]); 

Continued    ® 
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        // Find this symbol in the encoding list; 
        //   (skip this symbol if not found): 
        for (lnode = mHead;   lnode;   lnode = lnode–>next) 
            if (lnode–>symbol == ch) 
                break; 
 
        // Append the code to the morse string 
        //   (add one space to separate letters): 
        if (lnode) 
            morse += lnode–>code + ' '; 
/* 
    The above statement looks neat, but it may be atrociously 
    inefficient.  We start with an empty string and may end up 
    with a string of considerable length.  Each time += is executed, 
    the string buffer may be reallocated and the whole string will 
    be copied into the new buffer.  This is repeated for every 
    character in the text string.  To avoid such situations we 
    could add a constructor to the apstring class that would 
    build an empty string but allocate a large buffer for future 
    expansion.  We could also add the space character to 
    the codes that we place into the encoding list in the Insert() 
    function instead of executing + every time here: 
 
    (e.g. lnode–>next = new LNODE(symbol, morsecode + ' ');) 
 
    Alternatively, we could use null–terminated strings to handle 
    concatenation more efficiently. 
*/ 
    } 
} 
 
void TELEGRAPH::Decode(const apstring &morse, apstring &text) 
 
// Converts Morse code into text. 
 
{ 
    TNODE *tnode; 
    int i, len = morse.length(); 
             
    text = "";                        // Make the text string empty; 
 
    tnode = mRoot; 
 
    // For each char in the encoded message (can be 
    //   a dot, a dash, or a space): 
 

Continued    ® 
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    for (i = 0;   i < len;   i++) { 
        // Go down the tree as long as you get dots or dashes. 
        //   When you encounter a space, take the symbol from 
        //   the node, add it to the text string, and return 
        // to the mRoot. 
            ... 
            ... 
        } 
    } 
} 

 

 TSTMORSE.CPP  � 
// TSTMORSE.CPP 
 
// This program tests the TELEGRAPH class. It prompts the user for a 
//   "telegram", encodes it in Morse code, "sends" the telegram, 
//   decodes the Morse code message and displays it. 
 
#include <iostream.h> 
#include <string.h> 
#include "morse.h" 
 
int main() 
 
{ 
    TELEGRAPH station; 
    apstring text, morse; 
 
    TELEGRAPH::Open(); 
 
    cout << "\nEnter telegram ==> "; 
    getline(cin, text); 
    cout << "\nSending >>>  "; 
    station.Encode(text, morse); 
    cout << morse; 
    cout << "  >>> Received\n\n"; 
    station.Decode(morse, text); 
    cout << text << endl; 
 
    TELEGRAPH::Close(); 
    return 0; 
} 
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22.8 Programming Project: e-Mail Revisited 
 
This project builds upon the toy e-mail system developed in the Section 20.5 
lab exercise.  One of that system’s flaws was that subscribers were kept in an 
array, which made it cumbersome to add or delete subscribers or search the list.  A 
binary search tree structure is much more appropriate for a system with a large 
number of subscribers.  Modify the system by adding the following features: 
 
1. Change the structure to keep subscribers in a binary search tree instead of an 

array. 
 
2. Add a password check at login and allow subscribers to change their password. 
 
3. Keep track of the number of unread messages in each mailbox and report it at 

login. 
 
4. Do not add subscribers automatically.  Designate a special subscriber, SysOp, 

who, in addition to the usual mail commands,  will have system privileges for 
adding and deleting subscribers.  Make SysOp assign default passwords to new 
subscribers.  Have SysOp log into the system just like any other subscriber, but 
make her name “SYSOP” and give her some additional functions to choose 
from her menu. 

 
 For “extra credit”: 
 
5. For billing purposes, keep track of the total number of messages sent by each 

subscriber.  Allow SysOp to run a “billing cycle” in which she reports the 
charges for each subscriber (for instance, you can charge $.20 for each sent 
message, making all received messages and the first 3 sent messages free) and 
zero out the sent-message counter.  

 
6. Save/read the whole system (the subscribers' tree and their mailboxes) to/from 

a file; (Optional: encrypt the passwords in the file).  See below for a hint on 
how to save a tree in a file. 

 
Prepare a report on testing, including your testing strategy and results.  
 
 Saving a Binary Tree in a File: 
 
You can save a binary tree in a file and load it from a file using recursive 
functions.  You can use some markers, such as [ and ], to separate the tree (and all 
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its subtrees) from the rest of the file.  The recursive functions are called from 
small, non-recursive functions that open and close the file with the given name: 
 
// TREE.H 
 
struct TREENODE { 
    apstring data; 
    TREENODE *left; 
    TREENODE *right; 
}; 
 
... 

 

 TREEFILE.CPP    � 
// TREEFILE.CPP 
 
#include <iostream.h> 
#include <fstream.h> 
#include "tree.h" 
 
static void RecursiveSave (ofstream &file, TREENODE *root); 
static void RecursiveLoad (ifstream &file, TREENODE* &root); 
 
//**************************************************************** 
 
void SaveTree (const apstring &fileName, TREENODE *root) 
 
// Opens a file for writing and saves the tree in it. 
 
{ 
    ofstream file(fileName.c_str()); 
    if (!file) { 
        cerr << "Cannot create " << fileName << endl; 
        return; 
    } 
    RecursiveSave(file, root); 
} 
 
//**************************************************************** 
 

Continued    ® 



432 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

void LoadTree (const apstring &fileName, TREENODE* &root) 
 
// Opens a file for reading and loads the tree from it. 
// If the file does not exist, returns null. 
 
{ 
    ifstream file(fileName.c_str()); 
    if (!file) { 
        cerr << "Cannot open " << fileName << endl; 
        return; 
    } 
    RecursiveLoad(file, root); 
} 
 
//**************************************************************** 
//***         Recursive Save and Load functions                *** 
//**************************************************************** 
 
static void RecursiveSave (ofstream &file, TREENODE *root) 
 
// Recursive helper function –– called from SaveTree; 
// Assumes that file is open for writing. 
 
{ 
    file << "["; 
    if (root) { 
        file << endl; 
        file << root–>data << endl; 
        RecursiveSave (file, root–>left); 
        RecursiveSave (file, root–>right); 
    } 
    file << "]\n";  // An empty tree is saved as one line: [] 
} 
 
//**************************************************************** 
 
static void RecursiveLoad (ifstream &file, TREENODE* &root) 
 
// Recursive helper function –– called from LoadTree. 
// Assumes that file is open for reading and that the tree is empty. 
 
{ 
    apstring line; 
               
    if (root != 0) 
        return; 
 
    // Skip all lines before the first '[': 
    while (getline(file, line)) 
        if (line.length() > 0 && line[0] == '[') 
             break; 

Continued    ® 
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    if (line.length() >= 2 && line[1] == ']') 
                                      // If the tree is empty... 
        return; 
 
    getline(file, line);              // Read the next line 
    root = new TREENODE; 
    root–>data = line; 
    root–>left = 
    root–>right = 0; 
    RecursiveLoad(file, root–>left); 
    RecursiveLoad(file, root–>right); 
    getline(file, line);              // Read the closing ']' 
    if (line.length() < 1 || line[0] != ']') 
        cerr << "Tree file format error: " << line << endl; 
} 

 
 

22.9 Summary 
 
A tree is a structure of connected nodes where each node, except one special root 
node, is connected to one parent node and may have one or more child nodes.  
Each node has a unique ascending path to the root.  A tree is an inherently 
recursive structure because each node in a tree can be considered the root of its 
own tree, called a subtree.  A binary tree is a tree where each node has no more 
than two children.  These are referred to as the left and right children.  In the linked 
representation, each node of a tree contains pointers to its child nodes. The nodes 
of a tree contain some data elements. 
 
The nodes of a tree are arranged in layers: all nodes at the same level are connected 
to the root with a path of the same length. The number of levels in a tree is called 
its height or depth.  One important property of trees is that they can hold a large 
number of elements in a relatively shallow structure.  A full binary tree with h 
levels contains 2h–1 elements. 
 
A binary search tree is a binary tree whose data elements have some relation of 
order defined for them and are organized so that the data element in each node is 
larger than all the elements in the node's left subtree and smaller than all the 
elements in its right subtree.  The binary search tree combines the benefits of an 
array for quick binary search and a linked list for easy element insertion and 
deletion. 
 
Due to the recursive structure of trees, it is convenient to use recursive functions 
when working with them.  This is especially true for the Destroy(…) function, 
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which deletes all the nodes of a tree, and tree traversal functions that “visit” each 
node of the tree once.   The Find(…) function, which finds a node with a target 
value, can be implemented recursively as well as with iterations. 
 
Preorder tree traversal first visits the root of the tree, then processes its left and 
right subtrees;  postorder traversal first processes the left and right subtrees, then 
visits the root; inorder traversal first processes the left subtree, then visits the root, 
then processes the right subtree. 
 
The binary tree and binary search tree can be implemented as C++ classes after 
resolving some minor technical problems. 
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23.1 Discussion 
 
An algebraic expression with parentheses and defined precedence of operations is 
a nested structure which can be naturally represented by a binary tree, called an 
expression tree.  A single binary operation can be represented as: 
 
            operator 
            /      \ 
        first     second 
       operand    operand 
 
For example, a + b can be represented as: 
 
             + 
            / \   
           a   b 
 
This is a building block for a binary tree.  Each node of the expression tree 
contains a token, which can be an “operator” or an “operand.”  In a more general 
definition, an operator may be a unary or binary operator, or even any function of 
one or two arguments.  For the sake of simplicity, we will consider only the binary 
arithmetic operators (+, –, *, /).   An operand can be a variable or a number.  The 
expression  
 
      (a + 1)(bc + 5 – c) 
 
for example, is represented as: 
 
                 * 
               /   \ 
              +     – 
             / \   / \ 
            a   1 +   c 
                 / \ 
                *   5 
               / \ 
              b   c 
 
In an expression tree, operators are represented by nodes with children, and 
operands are represented by leaves. 
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The expression tree can be built recursively.  For instance, if 
 
   Expr =  (Expr1) * (Expr2) 
 
then the expression tree for Expr will be: 
 
            * 
          /   \ 
       tree   tree 
        for    for 
       Expr1  Expr2 
 
If an expression is given to us as a string of characters in the usual algebraic 
notation, a recursive parsing procedure can convert it into an expression tree.  
(Parsing is a general term that refers to converting text into some structured 
representation.)  The parsing procedure may work along these lines: 
 
Parsing an algebraic expression: 
If the expression is empty, do nothing. 
If the expression is a single operand, create one leaf node 
for that operand. 
If the entire expression is enclosed in parentheses, drop 
them and parse (recursive step) the expression inside. 
Otherwise, find the last operator of the lowest precedence 
order outside of any parentheses.  Create a root node for 
that operator.  Parse (recursive step) the part of the 
expression to the left of that operator and append the 
resulting tree as the root's left subtree.  Parse the part of 
the expression to the right of the operator and append the 
resulting tree as the root's right subtree. 
 

23.2 Evaluating Expressions Represented by Trees 
 
Expression evaluation means calculating the value of the expression for some 
given values of its variables.  Recursion is the easiest way to implement an 
evaluation function for expression trees.  If a node is an operand, we simply fetch 
its value; if it is an operator, we apply that operator to the results of evaluation of 
the left and right subtrees.  Operands are represented by leaf nodes, operators by 
nodes with children: 
 
inline bool IsLeaf(XNODE *node) 
 
// Returns true if the node is a leaf. 
 
{ 
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    return (node && !node–>left && !node–>right); 
} 
 
inline bool IsOperator(XNODE *node) 
 
// Returns true if the node is an operator. 
 
{ 
    return (node && (node–>left || node–>right)); 
} 

 
For demonstration purposes we will assume that operands and operators are 
represented by character strings in tree nodes: 
 
struct XNODE { 
    apstring token;    // Represents either an operator or an operand. 
    XNODE *left; 
    XNODE *right; 
}; 

 
An expression evaluation function may look as follows: 
 
double Eval(XNODE *root) 
 
// Returns the value of the expression represented by 
//   an expression tree. 
// GetValue(...) and ApplyOperation(...) functions are 
//   not defined here. 
 
{ 
    double value; 
 
    if (IsLeaf(root))              // root–>token is an operand... 
        value = GetValue(root–>token); 
    else                           // root–>token is an operator... 
        value = ApplyOperation(root–>token, 
                     Eval(root–>left), Eval(root–>right)); 
    return value; 
}  

 
Eval(…) calls the GetValue(…) function, which presumably converts a number 
into a double or gets the value of a variable, perhaps from some table of 
variables.  ApplyOperation(op, x, y) returns the sum, product, etc., for x 
and y, depending on the operation specified in op. 
 
As a lab exercise, you can add a constructor for the XNODE structure: 
 
    XNODE(char *s, XNODE *lptr, XNODE *rptr); 
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This will help you initialize nodes.  Then you can “hard code” the expression tree 
for  
 
      (a + 1)(bc + 5 – c) 
 
directly into the program: 
 
int main() 
 
{ 
    /* 
 
    Expression tree for the expression 
 
          (a+1)(bc + 5 – c) 
 
                * 
             /     \ 
            +       – 
           / \     / \ 
          a   1   +   c 
                 / \ 
                *   5 
               / \ 
              b   c 
 
 
    */ 
 
    XNODE node1 ("b", 0, 0);   // Left and right pointers are set 
                               //   to null. 
    XNODE node2 ("c", 0, 0); 
    XNODE node3 ("*", &node1, &node2); 
                               // Left and right pointers are set to 
                               //   the addresses of node1 and node2. 
    XNODE node4 ("5", 0, 0); 
    XNODE node5 ("a", 0, 0); 
    XNODE node6 ("1", 0, 0); 
    XNODE node7 ("+", &node3, &node4); 
    XNODE node8 ("c", 0, 0); 
    XNODE node9 ("+", &node5, &node6); 
    XNODE node10 ("–", &node7, &node8); 
    XNODE node11 ("*", &node9, &node10); 
    XNODE *root = &node11;     // root is set to the address of node11. 
    ... 
} 

 
You can code the GetValue(…) and ApplyOperation(…) functions, prompt the 
user for the values of a, b, and c, and test your Eval(…) function. 
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23.3 Prefix and Postfix Notations 
 
An inorder traversal of an expression tree will print out the expression in a fully 
parenthesized form.  We need some additional logic in the 
PrintExprInOrder(…) function for printing parentheses: 
 
void PrintExprInOrder(XNODE *root) 
 
// Prints out the expression in a fully parenthesized form 
//   from an expression tree. 
 
{ 
    if (root) { 
        if (IsOperator(root–>left)) cout << '('; 
        PrintExprInOrder(root–>left); 
        if (IsOperator(root–>left)) cout << ')'; 
 
        cout << ' ' << root–>token << ' '; 
 
        if (IsOperator(root–>right)) cout << '('; 
        PrintExprInOrder(root–>right); 
        if (IsOperator(root–>right)) cout << ')'; 
    } 
} 

 
int main() 
 
{ 
    ... 
    cout << "Infix Notation:   "; 
    PrintExprInOrder(root); 
    cout << "\n\n"; 
    ... 
} 

 
The output will be: 
 

Infix Notation:   ( a  +  1 ) * ((( b  *  c ) +  5 ) –  c )           � 
... 

 
This conventional algebraic notation is called infix notation.  In infix notation, the 
operator is placed between the operands: 
 
   Infix:       x + y 
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There are two other ways to represent expressions which are not used in everyday 
life but are very useful in computer applications.  They are called prefix and 
postfix notations.  In prefix notation we place the operator before the operands,  
and in postfix notation we place it after the operands: 
 
   Prefix:      + x y 
   Postfix:     x y + 
 
Prefix and postfix notations are very convenient for evaluating expressions 
because they do not use parentheses and do not need to take into account the 
precedence of the operators.  The order of operations can be uniquely 
reconstructed from the expression itself.  For example, an expression in postfix 
notation 
 
     a 1 + b c * 5 + c – *  
 
is evaluated in the following order: 
 
     (a 1 +) (((b c *) 5 +) c –) *  
 
But there is no need to show parentheses because there is only one way of 
correctly placing them.  We will show later in this section how to evaluate 
algebraic expressions written in prefix and postfix notations.  
 
As you can guess, prefix and postfix notations for an algebraic expression can be 
generated by traversing the expression tree in preorder and postorder, respectively.  
If we add the preorder and postorder traversal functions to our program — 
 
void PrintExprPreOrder(XNODE *root) 
 
// Prints out an expression in prefix notation. 
 
{ 
    if (root) { 
        cout << root–>token << ' '; 
        PrintExprPreOrder(root–>left); 
        PrintExprPreOrder(root–>right); 
    } 
} 
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void PrintExprPostOrder(XNODE *root) 
 
// Prints out an expression in postfix notation. 
 
{ 
    if (root) { 
        PrintExprPostOrder(root–>left); 
        PrintExprPostOrder(root–>right); 
        cout << root–>token << ' '; 
    } 
} 
 
... 
 
int main() 
 
{ 
    ... 
 
    cout << "Prefix Notation:  "; 
    PrintExprPreOrder(root); 
    cout << "\n\n"; 
 
    cout << "Postfix Notation: "; 
    PrintExprPostOrder(root); 
    cout << "\n\n"; 
 
    ... 
} 

 
— the output will be: 
 

...                                                                   � 
 
Prefix Notation:  * + a 1 – + * b c 5 c  
 
Postfix Notation: a 1 + b c * 5 + c – *  
 

 
We would like to stress, again, that both prefix and postfix notations 
unambiguously represent the original expression without any parentheses!  We 
will see shortly that we can go back and reconstruct the expression tree from either 
of them. 
 
Prefix notation is also called Polish notation after the Polish mathematician, 
Lukasiewicz,  who invented it, and postfix notation is sometimes called reverse 
Polish notation (RPN). 
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As opposed to conventional infix notation, which requires recursive evaluation of 
subtrees, the prefix and postfix notations allow us to evaluate an algebraic 
expression in a single sequential swipe.  In postfix notation we proceed from left to 
right.  The algorithm uses a temporary stack for holding unused operands and 
intermediate results: 
 
To evaluate an expression in postfix notation: 
  Going from left to right, consider the next token: 
    If it is an operand: push its value on the stack. 
    If it is an operator: pop the second operand, 
      pop the first operand, perform the operation, 
      push the result on the stack. 
 
If the initial expression was valid, we will be left at the end with one value on the 
stack — the evaluation result. 
 
Taking, again, 
 
     a 1 + b c * 5 + c – *  
 
as an example, let us see the evolution of the stack (the elements under each token 
represent the stack contents after the program encounters that token). 
 
 
 a  1   +   b   c   *  5     +    c     –          * 
     
                c      5          c   
    1       b   b  bc  bc  bc+5 bc+5  bc+5–c 
 a  a  a+1 a+1 a+1 a+1 a+1  a+1  a+1   a+1   (a+1)(bc+5–c) 

 
 
To evaluate an expression given in prefix notation, we do essentially the same 
thing, only going from right to left. 
 
To evaluate an expression in prefix notation: 
  Going from right to left, consider the next token: 
    If it is an operand: push its value on the stack. 
    If it is an operator: pop the first operand, 
      pop the second operand, perform the operation, 
      push the result on the stack. 
 
You may find it peculiar that the operands appear in the same order in 
the infix, postfix, and prefix notations — only the position of the 
operators is different.  This is a good test for converting one notation into 
another manually. 
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A manual procedure for short expressions does not have to follow the above 
formal algorithms: after some practice, triplets of operators with corresponding 
operands can be spotted immediately and replaced with their calculated results or 
parenthesized infix equivalents. 
 
Very similar procedures can be used to reconstruct the expression tree from an 
expression in postfix or prefix notation.  Instead of numbers, we push pointers to 
nodes on stack; instead of performing an operation, we link the operator node to 
the nodes of the operands. 
 
To build the expression tree from a postfix expression: 
  Going from left to right, take the next token: 
    Create a new node for the token. 
    If it is an operand: set the left and right children 
      to null and push the pointer to the new node on 
      the stack. 
    If it is an operator: pop a pointer from the stack and 
      set the new node's right child to it. 
      Pop another pointer from the stack and set the 
      new node's left child to it. 
      Push the pointer to the new node on the stack. 
 
At the end, the pointer to the root of the tree will be the only remaining element on 
the stack. 
 
Finally, if we want to convert an expression from postfix notation into prefix 
notation, we can reconstruct the expression tree using the above procedure and 
then traverse the tree in preorder. 
 

23.4 Summary 
 
Binary trees are a natural way to represent algebraic expressions.  Leaf nodes 
represent operands, and other nodes represent operators.  To build an expression 
tree from an ordinary algebraic expression we need to parse the expression.  
Parsing refers to the process of converting text to some more structured form.  A 
parsing routine may be implemented as a recursive function. 
 
You can print out the original expression in the conventional parenthesized form, 
called infix notation, through an inorder traversal of the expression tree.  Preorder 
and postorder traversals convert the expression into prefix notation and postfix 
notation, respectively. In prefix notation the operation sign is placed before the two 
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operands, and in postfix notation the operation sign is placed after the two 
operands.  Postfix notation is also called reverse Polish notation, or RPN. 
 
Postfix notation is very convenient for representing expressions without 
parentheses and without regard to the precedence of the operators.  A postfix 
expression can be evaluated in one sequential swipe from left to right with the help 
of a stack that holds unused operands and intermediate results.  A similar 
procedure can be used to reconstruct the expression tree from a postfix expression.  
The same applies to prefix expressions, but they have to be processed from right to 
left. 
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24.1 Discussion 
 
In some applications it is important to maintain a large set of elements that are 
ranked in some way and to have quick access to the highest-ranked element.  A 
structure that supports this functionality is the priority queue. 
 
Consider, for example, a credit card authorization processing system in which 
pending transactions are phoned from merchants to the bank's central office for 
authorization.  In addition to checking available credit limits, the system may run 
all its transactions through a special fraud detection module that ranks them 
according to the likelihood of fraud.  All the transactions that receive a significant 
fraud score may be inserted into a priority queue, ranked by their score, for review 
by specially trained operators. 
 
One obvious way of implementing a priority queue is to keep all the elements in a 
list in order of their rank.  The element of the highest rank would be the last 
element in the list.  This would be very convenient for accessing and removing that 
element, but to insert a new element, you would need to scan through the list until 
you found the spot corresponding to its rank.  If the list were long, this could take 
considerable time.  In an application where elements are frequently inserted and 
removed, the insert operation would create a bottleneck that would offset the 
advantage of instantaneous removal. 
 
You may recall from previous chapters that binary search trees allow us to 
combine the advantages of quick binary search with relatively quick insertion and 
removal of elements.  Binary trees of another type, called heaps, help us 
implement the priority queue in such a way that both insertion and removal of 
elements is quick.  In a heap, the largest element is in its root, and each node holds 
the largest element of the tree rooted in it.  Insertion or removal of an element 
takes a number of steps less than or equal to the height of the tree, which is only 
log2 n for a tree with n nodes.  For a tree with a million nodes, we would have to 
run through at most 20 steps, as opposed to the average of half a million steps in a 
sequential list implementation. 
 
The algorithm for quick insertion of elements into a heap requires going from a 
node to its parent.  In the linked representation of a tree, we could add to the node 
structure a pointer to the node's parent.  A more efficient way of implementing 
heaps, however, is based on non-linked representation of binary trees.  In this 
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method, all nodes are stored in an array in a certain order so that for each node it is 
easy to find its children and its parent. 
 

24.2 Binary Trees: Non-Linked Representation 
 
A binary tree is called full if all its levels are filled with nodes.  A binary tree is 
called complete if it has no gaps on any level. The last level may have some leaves 
missing on the right, but every node except the last must have a node after it. 
Figure 24-1 shows the shapes of a complete tree and a full tree.  A full tree with h 
levels has 2h–1 nodes.  The number of nodes in its last level is 2h–1. 
 
      Full                                                                 Complete
                tree:                                                                    tree:

 
 

Figure 24-1.   The shapes of full and complete trees 
 
 
If we have a complete tree, we can number all its nodes starting from 1 at the root, 
then proceeding from left to right at each consecutive level (Figure 24-2).  Since 
the tree is complete, there are no gaps between its nodes, so a node's number tells 
us exactly where in the tree we can find it.  In a full tree, each level contains twice 
as many nodes as the preceding level.  The left and right children of the i-th node, 
if they are present, have the numbers 2i and 2i+1, and its parent has the number i/2 
(truncated to an integer). 
 
We have numbered all the nodes of a complete tree with n nodes from 1 to n in 
such a way that knowing the number of a node lets us easily find the numbers of its 
left and right child and its parent.  This property allows us to store a complete tree 
in an array where the element x[i] corresponds to node number i (Figure 24-3).  
This is one of a few cases where it is convenient to count the elements starting 
from 1, as opposed to the C++ convention of indexing the elements of an array 
starting from 0.  In the C++ implementation it is convenient either to leave the first 
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element of the array (x[0]) unused or to use it for some other purpose, such as for 
holding some additional information about the tree. 
 

                                     1

                               2                       3

                      4           5               6            7

              8       9      10      11    12

 
Figure 24-2.   Numbering of the nodes in a complete tree 

 
 
 

 Terran

  Joel   Jeff

 Jenny  Jesse  Clancy  David

x[0]:  <unused>
x[1]:   Terran
x[2]:   Joel
x[3]:   Jeff
x[4]:   Jenny
x[5]:   Jesse
x[6]:   Clancy
x[7]:   David
x[8]:   Crystal
x[9]:   Andy

Crystal   Andy

1

2 3

4 5 6 7

8 9

 
 

Figure 24-3.   Representation of a complete binary tree in an array 
 

24.3 Implementation of a Heap 
 
A heap is a complete binary tree in which nodes hold some ranked data elements, 
and the element in each node is ranked at least as high as all the elements in its 
subtrees.  In a heap, the rank of the element in the root node is the highest.  Unlike 
binary search trees, heaps are allowed to have more than one element of the same 
rank and elements in the left subtree do not have to be ranked lower than elements 
in the right subtree.  We can also consider heaps with reverse ordering where the 
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element of the lowest rank is in the root and the rank of each node is not higher 
than ranks of all the nodes in its subtrees.  These are often called inverted or 
minimum heaps. 
 
The best way to implement a heap is through the array representation of a binary 
tree, where the element x[1] of the array corresponds to the root of the heap 
(Figure 24-4).  The array may contain data elements, records, database access keys, 
pointers to strings, or pointers to data records.  We have to specify some way of 
ranking these data elements. 
 

                    55                     x[0]  <unused>
                        1                  x[1]    55
                                           x[2]    21
             21             34             x[3]    34
                2               3          x[4]     3
                                           x[5]     8
         3       8      13       5         x[6]    13
            4       5       6        7     x[7]     5
                                           x[8]     1
     1     2     1                         x[9]     2
       8      9     10                      x[10]    1

 
 

Figure 24-4.   A heap of numbers, stored in an array 
 
 
In the following code the HEAP class is implemented as a templated class with 
elements of itemType for which the assignment and <= operators make sense.  
The heap array is implemented as a dynamically allocated array of the specified 
size.  HEAP.H defines the class: 
 



452 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

  HEAP.H                  � 
// HEAP.H 
 
// Heap template class 
// Author: Q. Prior 
 
#ifndef _HEAP_H_ 
#define _HEAP_H_ 
 
#include "apvector.h" 
 
template <class itemType> 
class HEAP { 
 
  private: 
 
    int mSize;                    // Maximum size 
    int mNodes;                   // Current number of nodes 
    apvector<itemType> mBuffer;   // Array of heap elements 
 
  public: 
 
    HEAP (int size = 1024);  // Constructor 
    ~HEAP(); 
    bool isEmpty(); 
    bool isFull(); 
    bool Insert(const itemType &x); 
    bool Remove(itemType &x); 
}; 
 
... 
 
#endif // _HEAP_H_ 

 
The HEAP constructor uses an initializer list to set up a buffer of the specified size.  
It sets the number of nodes to 0 for an empty heap: 
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  HEAP.H                  � 
template <class itemType> 
HEAP<itemType>::HEAP(int size) 
 
// Constructor: builds a heap of size "size". 
 
        : mNodes(0), mSize(size), mBuffer(size + 1) 
        // Buffer is size+1 because the first element is not used. 
{} 
 
template <class itemType> 
HEAP<itemType>::~HEAP() 
 
// Destructor. 
 
{} 
 
//**************************************************************** 
 
template <class itemType> 
bool HEAP<itemType>::isEmpty() 
 
{ 
    return mNodes == 0; 
} 
 
template <class itemType> 
bool HEAP<itemType>::isFull() 
{ 
    return mNodes == mSize; 
} 

 
The heap Insert(…) function has to add an element to a heap while preserving 
the ordering property of its elements and at the same time making sure that the 
heap remains a complete tree.  This requires some rearranging of nodes, but, 
fortunately, we do not have to move around all the nodes.  We can visualize the 
insert operation as first appending a new element at the end of the heap, then 
moving it up from level to level by swapping it with its parent until it reaches the 
right place.  The “last” element of the heap is the last element in its array 
representation, which is the rightmost occupied node of the bottom level of the 
tree.  The procedure that adjusts the order of nodes in the heap by moving an 
element up the heap is called the “Reheap Up” procedure.  In reality, when we 
insert a new element into a heap, there is no need to add it to the heap first and 
then physically swap it from level to level.  Instead, we can move the element up 
“logically” by creating a vacancy for it in the heap and then inserting it into the 
right spot (Figure 24-5). 
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  HEAP.H                  � 
template <class itemType> 
bool HEAP<itemType>::Insert(const itemType &x) 
 
// Inserts x into the heap. 
// Returns true if successful, false if the heap is full. 
 
{ 
    if (isFull()) 
        return false; 
 
    mNodes++;  // The last node of the heap is now vacant. 
 
    // Starting from the (vacant) last node, go from node i to 
    //   its parent iParent and, as long as the parent is 
    //   smaller than x, move the parent down: 
 
    int i = mNodes; 
    int iParent; 
 
    while (i > 1) { 
        iParent = i/2; 
        if (x <= mBuffer[iParent]) 
            break; 
        mBuffer[i] = mBuffer[iParent]; // Move the parent down; 
        i = iParent;                   // mBuffer[i] is now vacant. 
    } 
 
    // Insert x into the created vacancy: 
    mBuffer[i] = x; 
 
    return true; 
} 

 
The heap Remove(…) function is similar.  We always remove an element from the 
root of the heap.  After that the heap needs some adjustment to preserve its 
ordering property and to keep it a complete tree.  We can visualize this procedure 
as first placing the last element of the heap into its root, then moving it down from 
level to level, swapping it with its larger child until it falls into place.  This is 
called the “Reheap Down” procedure.  Again, the swapping is done “logically” by 
simply moving the vacant spot down the heap before the last element of the heap is 
put into it (Figure 24-6). 
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                                     a) Initial heap.
                     55                 Insert "44".

                                            44
              21             34

          3       8      13       5

      1     2     1

                                     b) Add a new leaf.
                     55                 Demote parent ("8").

                                            44
              21             34

          3              13       5

      1     2     1    8

                                     c) Demote parent ("21").
                     55

                                            44
                             34

          3      21      13       5

      1     2     1    8

                                     d) "44" Inserted.
                     55

              44             34

          3      21      13       5

      1     2     1    8

 
 

Figure 24-5.   Inserting a node into a heap 
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                                     a) Initial heap.
                     29                 Remove top ("29").

              17             23

          13      7       2       3

      11    5

                                     b) "Cut off" the last
                                         leaf.

     5                                       29
              17             23

          13      7       2       3

      11

                                     c) Promote the largest
                     23                    child.

     5
              17

          13      7       2       3

      11

                                     d) Insert remaining
                     23                    leaf.

              17             5

          13      7       2       3

      11

 
Figure 24-6.   Removing the top element from a heap 
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  HEAP.H                  � 
template <class itemType> 
bool HEAP<itemType>::Remove(itemType &x) 
 
// Removes the largest element (from the root of the heap). 
// Returns true if successful, false if the heap is empty. 
 
{ 
    if (isEmpty()) 
        return false; 
 
    // Retrieve the top element: 
 
    x = mBuffer[1];              
 
    // Starting from the vacant root, go from node iParent to its 
    //   larger child i and, as long as that child 
    //   is greater than the last element of the heap, 
    //   move that child up: 
 
    int iParent = 1;       // root 
    int i = 2;             // its left child 
 
    while (i <= mNodes) { 
        // Set i to the right child, i+1, if it 
        //   exists and is larger: 
        if (i < mNodes && mBuffer[i] < mBuffer[i+1]) i++; 
 
        // Compare with the last node: 
        if (mBuffer[i] <= mBuffer[mNodes]) break; 
 
        mBuffer[iParent] = mBuffer[i];   // Move the child up;  
        iParent = i;             // mBuffer[iParent] is now vacant. 
        i *= 2;                  // i is set to its left child 
    } 
 
    // Move the last element into the created vacancy: 
    if (mNodes > 1) 
        mBuffer[iParent] = mBuffer[mNodes]; 
    mNodes––; 
  
    return true; 
} 
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24.4 Programming Project: Stock Exchange 
 
A stock exchange is an organization for trading shares in publicly owned 
companies.  In the OTC (“Over the Counter”) system, stocks are traded 
electronically through a vast network of dealers in securities connected to a 
computer network.  There is no physical “stock exchange” location.  The system 
keeps track of “buy” and “sell” orders placed by customers through their brokers 
and automatically executes orders when the highest “bid price” (order to buy 
shares at a certain price) meets the lowest “ask price” (offer to sell shares for a 
certain minimum price).  There are also “market” orders to buy or sell shares at the 
current “bid” or “ask” price.  With the advent of modern technology, some 
electronic brokerages let customers place their own orders through their personal 
computers over a modem or computer network. 
 
Shares are normally sold in units of 100.  The stocks are identified by their trading 
symbols, all capital letters.  For example, Microsoft is “MSFT” and Intel is 
“INTC.” 
 
In this project you will implement a toy OTC system for trading in a dozen stocks.  
The system will maintain a list of all active buy and sell orders for each stock.  In 
your system a customer can log in, give his or her name, request quotes (current 
prices) and place orders.  An order holds the name of the customer, a buy or sell 
indicator, the stock symbol, the number of shares, and a price limit (or “market”).  
Your system does not have to keep track of the availability of money or shares on 
“customer” accounts. 
  
Stock prices are traditionally quoted in dollars and fractions of 1/2, 1/4, 1/8, etc.  
For example, “52 1/2” means $52.50, and “38 7/8” means $38.87.  But there is 
some talk about switching to the decimal system.  For the sake of simplicity, your 
system may use dollars and cents.   
 
Your system should keep all buy orders for each stock in a priority queue ranked 
by the bid price, and all sell orders in an inverted priority queue with the smallest 
“ask” price order on top.  The priority queues may be implemented using the 
templated class HEAP.  After a new order comes in, the system checks if it can be 
executed and, if so, executes it and reports to both parties as follows: 
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Sharon K.:                                                            � 
You sold 2000 of  MSFT at $84.37. 
Commission $19.95. 
Total proceeds $168720.05. 
 
Bill M.: 
You bought 2000 of  MSFT at $84.37. 
Commission $19.95. 
Total due $168759.95. 

 
The system executes a “market” buy order at the price of the lowest ask and a 
“market” sell order at the price of the highest bid.  Normally they can be executed 
immediately as they arrive.  In the unlikely event that there is only a “market” sell 
and a “market” buy, execute them at the last sale price. 
 
Your system should keep track of the day’s “high” and “low” prices and the last 
sale price for each stock and be able to quote them to customers on demand.  The 
quote should also contain the current (highest) bid and (lowest) ask and the number 
of shares in them.  For example: 
 

MSFT                                                                  � 
Hi:  89.50    Lo: 82.87      Last: 84.37 
Bid  82.87    Bid size  2000 
Ask  84.00    Ask size  1000 

 
In your system all orders will be “partial” orders.  This means that if an order 
cannot be executed for the total number of shares requested in it, the maximum 
possible number of shares will change hands and a partial order for the remaining 
shares will still be active.  For bid and ask quotes and partial orders you will need 
to add a function that “peeks” at the top of the heap without removing an element 
from it. 
 
In addition to the source code and a working program, develop a plan for testing 
your program. 
 

24.5 Summary 
 
A binary tree is called complete if all its levels are completely filled with nodes 
without gaps up to the last level, which may have nodes missing on the right.  A 
heap is a complete binary tree that holds some ranked data elements in such a way 
that the root holds an element of the highest rank and each node holds an element 
ranked not lower than all elements in its subtree.  A heap is allowed to have several 
elements of the same rank.  The heap structure is an efficient way of implementing 
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a priority queue in which we can insert elements at any rank but remove the 
element of the highest rank.  The heap allows us to insert or remove an element in 
log2 n steps, where n is the total number of elements in the priority queue. 
 
The best way of implementing a heap is through the non-linked representation of a 
complete binary tree.  In this implementation the tree nodes are represented by the 
elements in an array. If x is the array, the root corresponds to x[1]; then follow 
the nodes in each consecutive level from left to right.  In the C++ implementation, 
x[0] is not used.  With this numbering of nodes, the children of the node x[i] 
can be found in x[2i] and x[2i+1], and the parent of x[i] is in x[i/2]. 
 
The Insert and Remove functions insert and remove a heap element, respectively.  
They have to rearrange a number of nodes in the heap to preserve the ordering 
property and to keep the tree complete.  The process involves no more than one 
node at each level and therefore requires a number of steps no greater than the 
depth of the tree.  These functions can be implemented in concise iterative code. 
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25.1 Discussion 
 
Kevin writes, on average, one line of code per minute.  Kevin's computer executes 
one million instructions per second.  If an average line of code compiles into five 
instructions and Kevin's program ran for seven minutes, how long did it take Kevin 
to write the program? 
 
Fortunately, the answer to this problem is not 160 years.  The catch is that the 
same instruction may be executed many times.  Kevin's program probably 
implements one or several algorithms that let him describe a large number of 
operations using a relatively small number of program statements. 
 
Understanding, devising, and implementing algorithms are the key programming 
skills.  Yet it is not easy to give a formal definition of what an algorithm is.  We 
have presented a few examples of algorithms in Part 1 (Chapter 9).  We know that 
an algorithm is a method, described in more or less formal notation, of getting 
from some initial state to some desired final state in a finite number of steps, but 
rigorous formalization of this concept would eventually lead us to a precise 
abstract model of a “machine” that performs computations. 
 
To make our discussion more concrete, let us consider two tasks that are often used 
to illustrate the concept of an algorithm in a rather pure form.  These tasks are 
searching (that is, finding an element with a target value in a list of values), and 
sorting (arranging the elements of a list in ascending or descending order).  We 
have discussed examples of searching and sorting algorithms in Part 1 (Chapter 9).  
For a searching algorithm, the initial state is described by a list of values and a 
target value, and the final state is described by the found location of the target 
value in the list or the assertion that it is not in the list.  For a sorting algorithm, the 
initial state is a list of values and the final state is the list rearranged in ascending 
or descending order. 
 
The first property of algorithms, as we have already mentioned, is that they often 
use iterations (or recursion, which is a form of iteration implemented at the system 
level).  This property makes an algorithm different from a straightforward 
cookbook recipe, which typically has the same number of instructions as there are 
steps executed by the cook.  (That would not be very useful for computers that can 
execute millions of instructions per second.) Like a recipe, an algorithm describes 
all the necessary intermediate steps for getting from the initial state to the final 
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state; however, it often includes instructions to repeat certain sequences of steps a 
number of times. 
 
Another property of an algorithm is generality.  The same algorithm applies to a 
whole set of initial states and produces corresponding final states for each of them.  
For example, a sorting algorithm must be applicable to any list regardless of the 
values of its elements.  Moreover, an algorithm must also be independent of the 
size of the task.  The concept of the size of a task is hard to formalize, too.  It 
applies when the domain of all the initial states can be parameterized by a positive 
integer which is in some way related to the total number of steps necessary to do 
the task.  The size can describe the length of a list, the dimensions of a 
multidimensional array, and so on.  For example, the number of elements in the list 
determines the size of a list-sorting task.  In finding an element in a binary search 
tree with n nodes, the size is the total number of nodes.  In an iterative or recursive 
procedure for finding n-factorial or the n-th Fibonacci number, n is the size.  The 
generality of an algorithm assures that the same algorithm applies to different sizes 
of the same general task. 
 
When we study algorithms, it is useful to assume a certain level of abstraction and 
ignore extraneous details.  For example, the same sorting algorithm applies to any 
type of elements for which there is a relation of order.  It does not matter whether 
the elements are integers, floating point numbers, or some records that have to be 
sorted by some key.  What is important for sorting is that for any two elements we 
can say whether the first is less than, equal to, or greater than the second, and that 
the elements of a list can swap places.  The abstract formulation of algorithms 
allows us to talk about algorithms for searching, sorting, tree traversal, and so on, 
without referring to specific data types and other details.  It also lets us study the 
properties and efficiency of algorithms in an abstract, theoretical way. 
 
Algorithms are often analyzed in terms of their time efficiency and space 
requirements.  These are the concerns of a branch of computer science called 
computational complexity or operations research.  In this book we concentrate on 
time efficiency.  One obvious way to measure the time efficiency of an algorithm 
is to implement it in a computer program, run that program on various sets of input 
data, and measure the running time.  Computer practitioners call this type of 
measurement a benchmark.  It may seem that benchmarks leave little room for 
theory, but that first impression is incorrect.  Benchmarks depend on the details of 
implementation, such as the actual code, the programming language and 
optimizing capabilities of the compiler, the CPU speed and other hardware 
characteristics, and so on.  It turns out it is possible to study efficiency of 
algorithms excluding all these practical matters.  Such an abstract, theoretical 
approach is not only useful for discussing and comparing algorithms, but also 
ultimately leads to very concrete improved solutions to practical problems. 
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The theoretical study of algorithms relies on an abstract model of a computer as a 
device with some defined capabilities, such as the capability to perform arithmetic 
operations and to store and retrieve data elements in memory.  The abstract model 
disregards specific features of a particular computer system, such as the CPU speed 
or RAM size.  The abstract approach requires two simplifications.  First, we have 
to stop measuring performance in real time (which depends on CPU speed, etc.).  
Nor do we measure it in terms of the number of required program instructions or 
statements (which depends on the language, compiler, implementation, etc.).  
Instead, we discuss performance in terms of some abstract “steps” that are 
necessary to complete the task.  What constitutes a “step” depends on the nature of 
the task.  In a searching task, for example, we may define one step as one 
comparison between the target value and a data element in the list.  In calculating a 
Fibonacci number iteratively, one step may be defined as one addition.  The total 
number of required steps may depend on the size of the task, but it is assumed that 
each step takes the same amount of time.  With this approach we cannot say how 
long a particular implementation of an algorithm might run on a particular 
computer system, but we can compare different algorithms that accomplish the 
same task. 
 
The second simplification is that our theoretical analysis applies only when the 
task size is a large number.  Let us denote the total number of steps that an 
algorithm requires to complete the task as T(n).  T(n) is some function of the task 
size n.  The theoretical approach focuses on the behavior of T(n) for large n, which 
is called asymptotic behavior.  In the following section we will see why knowing 
the asymptotic behavior of an algorithm is important and how it can be expressed 
in formal mathematical terms. 
 

25.2 Asymptotics: Big-O Notation 
 
As a starting point for our discussion, let us compare two searching algorithms, 
sequential search and binary search.  We will assume that the elements in the array 
are arranged in ascending order. 
 
In the sequential search algorithm we simply try to match the target value against 
each array value in turn until we find a match or finish scanning the whole array.  
If the array contains n elements, the maximum possible number of “steps” 
(comparisons with the target) will be 
 
 T(n) = n 
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This is “the worst case.”  If we assume that the target is randomly chosen from the 
values in the array, on average we will need to examine only half of the elements, 
so 
 
 Tavg(n) = n / 2 
 
Suppose this algorithm is implemented as follows: 
 
    for (int i = 0;   i < n;   i++) 
        if (a[i] == target) break; 

 
The total running time includes the initialization and several iterations through the 
loop.  In this example, the initialization is simply setting i equal to 0.  Assuming 
that the average number of iterations is n/2, the average time may be expressed as: 
 
 t(n) = tinit + titer n / 2 
 
where tinit is initialization time, and titer is the time required for each iteration.  In 
other words, the average time is some linear function of n: 
 
 t(n) = An + B 
 
As n increases, An also increases, and the relative contribution of the constant term 
B eventually becomes negligible as compared to the linear term An, even if A is 
small and B is large.  Mathematically, this means that the ratio 
 

 t n
An

An B
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B
An
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+
= +1  

 
becomes very close to 1 as n increases without bound. 
 
Therefore, for a large n we can drop the constant term and say that the average 
time is approximately An.  That means that the average time for the sequential 
search algorithm grows linearly with n (Figure 25-1 (a)). 
 
Now let us consider the binary search algorithm applied to the same task.  For this 
algorithm it is important that the elements be arranged in ascending order.  We 
compare the target with the middle element in the array.  If it is smaller, we 
continue searching in the left half, and if it is larger, in the right half.  For n=3, if 
we are lucky, we find the element on the first try; in the worst case we need 2 
comparisons.  For n=7, we first try a[3] and then, if it does not match the target, 
continue with a[0]...a[2] or a[4]...a[6].  In the worst case we need 3 
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comparisons.  In general, if n is between 2h–1 and 2h–1, the worst case will require 
h comparisons.  Thus, the number of comparisons in the worst case is  
 
 T(n) = log2 n + 1 (truncated to an integer). 
 
For an element randomly chosen from the values in the array, the average number 
of steps in a binary search is (approximately, for large n) only one less than the 
worst case.  
 
 
 
 a)                                       b)                                                   c)
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t

n

t

n

t
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Figure 25-1. (a) Linear growth;  (b) logarithmic growth; 
  (c) log growth is slower 

 
Let us assume that the algorithm is implemented as follows: 
 
    ... 
    int location = –1; 
    int left = 0, right = n–1, middle; 
 
    while (left <= right) { 
        middle = (left + right) / 2; 
        if (target > a[middle]) 
            left = middle + 1; 
        else if (target < a[middle]) 
            right = middle – 1; 
        else { 
            // if (target == a[middle]) 
            location = middle; 
            break; 
        } 
    } 

 
Again, the total time consists of the initialization time and the average number of 
iterations through the loop: 
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 t(n) = tinit + titer log2 n 
 
Following the same reasoning as for the sequential search, we conclude that the 
execution time of the binary search is, for large n, approximately proportional to 
the logarithm of n: 
 
 t(n) = C log2 n 
 
The coefficient C is determined by the time spent in one iteration through the loop.  
Figure 25-1 (b) shows the general shape of this curve.  log2 n approaches infinity as 
n increases, but it does so more slowly than the linear growth of a straight line. 
 
Note that “one step” in the sequential search is not exactly the same as “one step” 
in the binary search, because besides comparing the elements, we also need to 
modify some variables and control the iterations.  Thus, the coefficients A and C 
may be different; for example, C may be larger than A.  For some small n, a 
sequential search may potentially run faster than a binary search.  But, no matter 
what the ratio of A to C, the linear curve eventually overtakes the logarithmic 
curve for large enough n (Figure 25-1 (c)). 
 
In other words, asymptotically, binary search is faster than sequential search.  
Moreover, it is not just 5 times faster or 100 times faster.  It is faster in principle: 
you can run sequential search on the fastest computer and binary search for the 
same task on the slowest computer, and still, if n is large enough, binary search 
will finish first. 
 
This is an important theoretical result of our comparison of the two searching 
algorithms.  The difference in their asymptotic behavior provides an important new 
way of looking at their performance.  Binary search time grows logarithmically 
and sequential search time linearly, so no matter what specific coefficients of the 
growth functions we use, linear time eventually surpasses logarithmic time. 
 
In this context it makes sense to talk about the order of growth that characterizes 
the asymptotic behavior of a function, ignoring the particular constant coefficients.  
For example,  f(n) = n has higher order of growth than g(n) = log2 n, which means 
that for any positive constant C 
 
 n  >  C log2 n 
 
when n is large enough.  Two functions that differ only by a constant factor have 
the same order of growth. 
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The following definition of the big-O (order of growth) notation helps us formalize 
this terminology and refine our ideas about the order of growth.  “Big-O” is 
defined as follows: 
 
Given two functions t(n) and g(n), we say that 
              t(n) = O(g(n)) 
if there exist a positive constant A and some number N such that 
              t(n)  ≤  A g(n) 
 for all n > N. 

 
The big-O definition basically means that t(n) asymptotically (for large enough n) 
grows not faster than g(n) (give or take a constant factor).  In other words, the 
order of growth of t(n) is not larger than g(n). 
 
So, in terms of order of growth, f = O(g) is like “f ≤ g.”  In practice, when the 
performance of algorithms is stated in terms of big-O, it usually refers to the 
“tightest” possible upper bound.  In this book, we have chosen to follow the widely 
accepted practice of using big-O in the sense of “growth of f = g.”  For example, in 
our analysis of the two searching algorithms we say that both the worst and 
average time is O(n) for the sequential search and O(log2 n) for the binary search. 

a a a 

One set of functions that are often used for describing the order of growth are, 
naturally,  powers of n: 
 
 1, n, n2, n3, ... 
 
The order of growth for nk is higher than nk–1. 
 
If a function is a sum of several terms, its order of growth is determined by the 
fastest growing term.  In particular, if we have a polynomial 
 
 p(n) = aknk + ak–1nk–1 + ...+ a1n + a0 
 
its growth is of the order nk: 
 
 p(n) = O(nk) 
 
Thus, any second degree polynomial is O(n2).  This is called quadratic growth. 
Let us consider a common example of code that requires O(n2) operations.  
Suppose we have two nested loops: 
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    ... // set up the outer loop 
    for (i = 1;   i < n;   i++) { 
        ... // set up the inner loop 
        for (j = 0;   j < i;   j++) { 
            ... // do something 
        } 
    } 
 

This kind of code may be used for finding duplicates in an array or in a simple 
sorting method (e.g., the selection sort explained in Part 1 and in Section 27.2.1), 
or in some operations on matrices (e.g., transposing a matrix by flipping an n by n 
2-D array symmetrically over its diagonal). 
 
The outer loop runs for i from 1 to n–1, a total of n–1 times, and the inner loop 
runs for j from 0 to i–1, a total of i times.  The code inside the inner loop will, 
therefore, execute a total of 
 
 1 + 2 + ... + (n–1) 
 
iterations.  Since this sequence is an arithmetic progression, its sum can be found 
by taking the total number of terms and multiplying it by the average of the first 
and the last term: 
 

 1 2 1 1
1 1

2
1

2
+ + + − = −

+ −
=

−
... ( ) ( )

( ) ( )
n n

n n n
 

 
If the setup time for the outer loop is tsetup1, the setup time for the inner loop is 
tsetup2, and the time inside the inner loop is titer, the total time for this code can be 
expressed as  
 

 t n t t n t n n( ) ( ) ( )
= + − +

−
setup1 setup2 iter1 1

2
 

 
This is a second degree polynomial of n: 
 

 t n t n t t n t t( ) ( ) ( )= + − + −iter
setup2

iter
setup1 setup22 2

2  

 
Therefore, 
 
 t(n) = O(n2) 

a a a 
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As we know from the Change of Base Theorem, for any a, b > 0, and a, b ≠1 
 

 log log
logb

a

a
n n

b
=  

 
Therefore, 
  
 loga n = C logb n 
 
where C is a constant equal to loga b. 
 
Since functions that differ only by a constant factor have the same order of growth, 
O(log2 n) is the same as O(log n).  Therefore, when we talk about logarithmic 
growth, the base of the logarithm is not important, and we can say simply O(log n). 

a a a 

The time efficiency of almost all of the algorithms discussed in this book can be 
characterized by only a few growth rate functions: 
 
I. O(1) — constant time.  This means that the algorithm requires the same 

fixed number of steps regardless of the size of the task. 
 
Examples (assuming a reasonable implementation of the task):  
 

A. Push and Pop operations for a stack (containing n elements); 
B. Insert and Remove operations for a queue. 

 
II. O(n) — linear time.  This means that the algorithm requires a number of 

steps proportional to the size of the task. 
 
Examples (assuming a reasonable implementation of the task):  
 

A. Traversal of a list (a linked list or an array) with n elements; 
B. Finding the maximum or minimum element in a list, or sequential 

search in an unsorted list of n elements; 
C. Traversal of a tree with n nodes; 
D. Calculating iteratively n-factorial; finding iteratively the n-th 

Fibonacci number. 
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III. O(n2) — quadratic time.  The number of operations is proportional to the 
size of the task squared. 

 
Examples: 
 

A. Some more simplistic sorting algorithms, for instance a selection 
sort of n elements; 

B. Comparing two two-dimensional arrays of size n by n; 
C. Finding duplicates in an unsorted list of n elements (implemented 

with two nested loops). 
 
IV. O(log n) — logarithmic time. 
 
Examples: 
 

A. Binary search in a sorted list of n elements; 
B. Insert and Find operations for a binary search tree with n nodes; 
C. Insert and Remove operations for a heap with n nodes. 

 
V. O(n log n) — “n log n” time. 
 
Examples: 
 

A. More advanced sorting algorithms — quicksort, mergesort, etc. — 
explained in Section 27.3. 

 
VI. O(an) (a > 1) — exponential time. 
 
Examples: 
 

A. Recursive Fibonacci implementation (a ≥ 3/2; see Section 19.5); 
B. Towers of Hanoi (a = 2; See Lab 19.6). 
C. Generating all permutations of n symbols. 

 
The best time in the above list is obviously constant time, and the worst is 
exponential time which, as we have seen, quickly overwhelms even the fastest 
computers even for relatively small n.  Polynomial growth (linear, quadratic, 
cubic, etc.) is considered manageable as compared to exponential growth. 
 
Figure 25-2 shows the asymptotic behavior of the functions from the above list.  
Using the “<“ sign informally, we can say that 
 
 O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < O(an) 
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The slow asymptotic growth of log2 n (in comparison to linear growth) is 
especially dramatic.  The thousand-fold increase in the size of a task results in only 
a fixed, fairly small increment in the required number of operations.  Consider the 
following: 
 
 log2 1000 ≈ 10;   log2 106 ≈ 20;   log2 109 ≈ 30;   ... etc. 
  
This property is used in many efficient “divide and conquer” algorithms such as 
binary search and is the basis for using binary search trees and heaps.  For 
example, binary search in an array of one million elements would take at most 
twenty steps. 
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Figure 25-2.   Rates of growth 
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25.3 Summary 
 
The efficiency of algorithms is usually expressed in terms of asymptotic growth as 
the size of the task increases toward infinity.  The size of a task is basically an 
intuitive notion: it reflects the number of elements involved or other similar 
parameters.  The asymptotic growth may be expressed using “big-O” notation, 
which gives an upper bound for the order of growth.  In practice, the big-O 
estimate is usually expressed in terms of the “tightest” possible upper bound. 
 
The most common orders of growth (in increasing order) are 
 
 O(1) — constant; 
 O(log n) — logarithmic; 
 O(n) — linear; 
 O(n log n) — “n log n”; 
 O(n2) — quadratic; 
 O(an) — exponential. 
 
Logarithmic growth is dramatically slower than linear growth.  This explains the 
efficiency of “divide and conquer” algorithms, such as binary search, and of binary 
search trees and heaps.  Discovering an O(log n) algorithm instead of an O(n) 
algorithm or an O(n log n) instead of O(n2) algorithm for some task is justifiably 
viewed as a breakthrough in time efficiency.  Exponential growth is 
unmanageable: it quickly puts the task out of reach of existing computers, even for 
tasks of rather small size. 
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26.1 Discussion 
 
Searching, hashing, and sorting are vast and important subjects.  At the practical 
level they are important because that is what many large computer systems do 
much of the time.  At the theoretical level they help to distill the general properties 
and interesting theoretical questions about algorithms and data structures and offer 
rich material on which to study and compare them.  At the junction of the 
theoretical and practical considerations there is a lot of room for original designs 
and ingenious solutions to various problems. 
 
In this chapter we focus on searching and hashing.  Searching tasks in computer 
applications range from finding a particular character in a string of a dozen 
characters to finding a record in a database of 100 million records.  In an abstract 
formulation, searching is a task that involves a set of data elements represented in 
some way in computer memory.  Each element includes a key which can be tested 
for an exact match against a target value.  A successful search finds the element 
with a matching key and returns its location or some information associated with 
it: a value, a record, or the address of a record. 
 
Searching refers to tasks where matching the keys against a specified target is 
straightforward and unambiguous.  If, by comparison, we had to deal with a 
database of fingerprints and needed to find the best match for a given specimen, 
that application would fall into the category of pattern recognition rather than 
searching.  It would also be likely to require the intervention of some human 
experts. 
 
The key depends on the application and may be a number, a string of characters, a 
date, etc.  In a database of taxpayers, for example, the key may be the taxpayer's 
social security number.  In a database of bank customers, the key may be the 
account number.  In situations where we search for a character in a string or a 
number in a list, the value itself serves as a key.  A key may consist of several 
elements, for instance a person's last name and first name.  The main key is called 
the primary key and additional keys are called secondary keys.  If a match is found 
in primary keys, the search program examines secondary keys.  From an abstract 
point of view, however, the division into primary and secondary keys and other 
details of the matching procedure are not important. 
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Searching of ordered lists relies on some relation of order defined for the keys, so 
that two keys can be compared not only in terms of an exact match, but also in 
terms of which key is larger or smaller. 
 
In large database systems the actual data files reside in mass storage and the search 
is performed not on actual records but on some index, a data structure that links the 
key with the record's location in storage.  Sometimes the same file may have 
several indices, depending on its use.  For example, the customers of a telephone 
company may be indexed by telephone number for billing inquiries and by name 
for directory assistance. 
 
Data organization and the choice of a search method depend on many factors: the 
number of elements, the range of values for keys, how often data elements are 
inserted or removed, how much we know about the frequency of access for various 
keys, etc.  At one extreme, the data may be organized in such a way that we know 
exactly where to find each key.  The key is used as an index in a lookup table; we 
go directly there and fetch the required data — no search is needed.  At the other 
extreme is the situation where the elements are stored randomly, and the only 
solution is to examine them one by one until we find a match or have checked all 
elements — a sequential search.  Between these two extremes are hashing 
methods, which build on the lookup table idea; binary search methods, which rely 
on the ordered arrangement of elements; and other variations.  In the following 
sections we consider sequential and binary search, lookup tables, and hashing. 
 

26.2 Sequential and Binary Search 
 
The theoretical efficiency of a searching algorithm is expressed as the number of 
comparisons necessary to find a match in the worst case and on average. 
 
Sequential search has to be used when the data elements are stored in a list in 
random order.  Its running time is O(n), where n is the number of elements.  The 
worst case requires n comparisons, and an average search requires n/2 
comparisons.  In some instances, the performance of a sequential search may be 
greatly improved if some target key values that occur much more frequently than 
others are placed closer to the beginning of the list. 
 
As we have seen in Part 1 (Chapter 9), binary search is generally a much more 
efficient method, requiring only (log2 n) + 1 (truncated to an integer) comparisons 
in the worst case.  It is a O(log n) algorithm: the average number of comparisons is 
approximately log2 n, only one less than the worst case (for large n). 
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This method applies only if the data elements are stored in an array in ascending or 
descending order. If elements are inserted or removed frequently, the cost 
associated with maintaining the array in order may outweigh the advantages of a 
binary search. 
 
In the following code, the BinarySearch(…) function is implemented as a 
template function for an array of elements of SOMETYPE arranged in ascending 
order.  The function assumes that the ==, <, and > operators are defined for 
SOMETYPE: 
 

  SORTS.CPP            � 
template <class SOMETYPE> 
int BinarySearch (const apvector<SOMETYPE> &v, SOMETYPE target) 
 
// Performs binary search in the array v. 
//   The elements in the array must be arranged in 
//   ascending order. 
//   Looks for a value equal to target. 
//   (the ==, < and > operators as well as assignment must be 
//   defined for SOMETYPE.) 
// Returns: the location of target in v, if found; –1 otherwise. 
 
{ 
    int location = –1, n = v.length(); 
    int left = 0, right = n–1, middle; 
 
    while (left <= right) { 
        middle = (left + right) / 2; 
        if (target > v[middle]) 
            left = middle + 1; 
        else if (target < v[middle]) 
            right = middle – 1; 
        else { 
            // if (target == v[middle]) 
            location = middle; 
            break; 
        } 
    } 
    return location; 
} 

 
If the target value is not found in the middle of the array, the search range in the 
array shrinks to its left or right half, depending on the comparison result between 
the target and the middle element.  A binary search requires direct access to the 
middle element and cannot be used with a linked list representation.  As we saw in 
Section 22.2, a linked structure that supports a method analogous to binary search 
is the binary search tree. 
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a a a 

A variation of the method, called the interpolation search, is based on the 
assumption that the array contains a uniform distribution of values.  The 
interpolation search works only for numeric types (or types that can be linearly 
mapped into numbers, such as characters in ASCII code).  Instead of selecting the 
next trial element in the middle of the array, we can try to guess the location of the 
target value using linear interpolation based on the values at the two ends of the 
array: 
 
    ... 
    middle = (right * (target – v[left]) + 
              left * (v[right] – target)) / (v[right] – v[left]); 
    ... 

 
We mention the interpolation search only because it supports our intuition: when 
we need to look up a word in a dictionary and the word starts with a “Y”, we open 
the dictionary not in the middle but closer to the end.  In computer programs an 
interpolation search may save a couple of comparisons, but it will probably waste 
more time computing the interpolation formula.  Our first comparison must also 
check separately that target falls into the range between v[left] and 
v[right]. 
 

26.3 Lookup Tables 
 
Lookup tables do not implement a search method but rather a method to avoid 
searching. The idea is to represent a data set in such a way that we know exactly 
where to find a particular element.  The element's key or value is converted either 
directly or through some simple formula into an integer, which is used as an index 
to a special lookup table.  The table may contain some associated data values, 
pointers, or addresses of records.  The mapping from all valid keys to the 
computed indices must be unambiguous, so that we can go directly to the 
corresponding lookup table entry and fetch the data.  The time of the data access is 
“instantaneous” (constant, O(1)), but some space may be wasted if not all lookup 
table entries are used. 
 
Suppose, for example, that an application such as entering shipping orders needs to 
use a database of postal zip codes which would quickly find the town or locality 
with a given zip.  Suppose we are dealing with 5-digit zip codes, so there are no 
more than 100,000 possible zip values — from 00000 to 99999.  Actually, only a 
fraction of the 5-digit numbers represent a valid zip code.  But in this application it 
may be important to make the zip code lookup as quick as possible.  This can be 
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accomplished using a table with 100,000 entries.  The 5-digit zip will be used 
directly as an index into the table.  Those entries in the table that correspond to a 
valid zip code will point to the corresponding record containing the locality name; 
all the other entries will remain unused. 
 
Lookup tables may waste some space, but they also save a little space because the 
key values do not have to be stored with data elements.  Instead, the value of the 
key is implicit in the element's location in the lookup table. 
 
Lookup tables are useful for many other tasks, such as data compression or 
translating one symbolic notation into another.  In graphics applications and in 
hardware, for example, a “logical” color code (usually some number, say, between 
0 and 255) can be converted into an actual screen color by fetching its red, green, 
and blue components from three lookup tables. 
 
Another common use is for tabulating functions when we need to speed up time-
critical computations.  The function argument is translated into an integer index 
which is used to fetch the function value from its lookup table.  In some cases, 
when the function argument may have only a small number of integer values, the 
lookup table may actually take less space than the code that would be needed to 
implement the function!  If, for example, we need to compute 3n repeatedly for n = 
0,...,9, the most efficient way, in terms of both time and space, is to use a lookup 
table of 10 values. 
 
In another example, an imaging application may need to count quickly the number 
of “black” pixels (picture elements) in a scan line.  In a large black and white 
image, pixels can be packed eight per byte to save space.  The task then needs a 
function which finds the number of set bits in a byte.  This function can easily do 
the job by testing individual bits in a byte, but a lookup table with 256 elements 
which holds the bit counts for all possible values of a byte (0-255) may be a more 
efficient solution. 
 

26.4 Lab: Cryptography 
 
The purpose of this lab is to master the use of lookup tables and distributions, the 
two techniques that lead to a better understanding of hashing. 
 
In the following example, both the input and output values are the letters 'a' 
through 'z'.  A lookup table of 26 entries is used to translate one letter into another: 
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 ENCRYPT.CPP       � 
#include <ctype.h> 
#include "apvector.h" 
 
// A lookup table for writing encoded messages. 
static apvector<char> lookup(26); 
 
char Encode(char c) 
 
// Translates c through the lookup table. Changes only letters 
//   and preserves the upper and lower case. 
 
{ 
    char newC = c; 
    char lowC = tolower(c); 
    int i; 
 
    if (lowC >= 'a' && lowC <= 'z') { 
        i = lowC – 'a'; 
        newC = lookup[i]; 
        if (isupper(c)) 
            newC = toupper(newC); 
    } 
 
    return newC; 
} 

 
The above  function uses the fact that lowercase letters have consecutive ASCII 
codes and converts a character between 'a' and 'z' into an integer index between 
0 and 25 simply by subtracting 'a'.  The encoded character is fetched directly 
from the lookup table — no search is performed, and no long switch statement is 
needed. 
 
A distribution of data values in a list can be represented as an array of counters.  
To build a distribution we first zero out all the counters.  Then we scan through the 
list once.  For each value in the list, we calculate the index into the array of 
counters based on that value (or, in a more general case, the range of values in 
which it falls), and increment the counter with that index. 
 
In this lab, you will receive two short text passages in two separate files, 
SAMPLE.TXT and SECRET.TXT.  The text in SECRET.TXT has been encrypted using a 
simple substitution cipher: each letter is represented by some other letter.  To break 
the code quickly, you can analyze and compare the frequencies of occurrence of 
letters of the alphabet in the sample text and the encrypted text.  Write a program 
that will calculate the distribution of frequencies of the letters in any text file.  
Keep track of the total number of letters in the file, and scale your output table to 
some reasonable units, such as occurrences per 1000 letters.  Run this program on 



482 PART 2 ~ CLASSES AND DATA STRUCTURES 
 

SAMPLE.TXT and SECRET.TXT.  Compare manually the distributions and come up 
with some guesses for possible meanings of encrypted letters.  (If you want to use 
a more advanced method and less guessing, you can also calculate a two-
dimensional distribution for occurrences of all combinations of two letters as well 
as a letter and a space.) 
 
Write another program (or modify the first one) for decoding the secret text 
interactively.  Read the whole file into a buffer and use a lookup table for 
translating the encoded letters into their actual values.  Your Decode(…) function 
can be exactly the same as the Encode(…) function above.  We called it 
Encode(…) because we used it to create the encoded text.  Initially all the entries 
in your lookup table should be set to a special character that indicates an unknown 
letter.  For example: 
 
static apvector<char> lookup(26, '–');     // All unknown 

 
When your program displays the secret text for the first time, all you can see is 
dashes in place of letters.  The program should help you use trial and error to 
decode the text.  Have it prompt you to enter a code letter and its guessed meaning, 
substitute the letter into the lookup table, and display the unknown text with all the 
guessed letters filled in.  The Substitute(…) function may look as follows: 
 
void Substitute(char codeletter, char guess) 
 
{ 
    int i; 
 
    codeletter = tolower(codeletter); 
    if (codeletter >= 'a' && codeletter <= 'z') { 
        i = codeletter – 'a'; 
        lookup[i] = tolower(guess); 
    } 
} 

  
The text buffer never changes — only the lookup table should change as 
you try different substitutions. 

 
When the secret text is decoded, save it in an output file. 
 
You can combine all these operations in one interactive program.  Your program 
may show a menu and execute commands: 
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    Commands:                                                         � 
        R <file name> –– Read secret or plain text from a file 
        C             –– Calculate frequencies of letters 
        A             –– Display text from the original file 
        S <codeltr> <guess> 
                      –– Substitute your guess for a code letter 
        D             –– Display partially decoded text 
        W <file name> –– Write text to a file 
        Q             –– Quit 
 

 

26.5 Hashing 
 
The hashing technique builds on the lookup table concept.  In a lookup table, a 
key is either used directly or converted through a very simple formula into an 
integer index.  There is a one-to-one correspondence between the key values and 
indices of elements in the lookup table.  This method is not practical, however, 
when the range of possible key values is large.  It is also wasteful when the 
mapping from keys to integer indices is very sparse — many lookup table entries 
remain unused. 
 
We can avoid these problems by using a better system of mapping from keys to 
integer indices in the table.  The purpose of the mapping is to map all possible key 
values into a narrower range of indices and to cover that range more uniformly.  
Such a transformation is called a hash function; a table used with it is a hash 
table. 
 
The price of hashing is that we lose the one-to-one correspondence between the 
keys and the table entries: two different keys may be mapped into the same 
location in the hash table.  Thus when we try inserting a new element into the 
table, the slot may be already occupied. These situations are called collisions.  We 
have to devise some method of dealing with them.  When we retrieve an element, 
we have to verify that its key indeed matches the target, therefore the key must be 
explicitly stored in the table with the rest of the record. 
 
The design of a hash table thus hinges upon successful handling of two problems: 
how to choose a good hash function and how to handle collisions.  There is room 
for ingenious solutions for both. 
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A good hash function must have the following properties: 
 
1. It must be easy to calculate; 
2. It must map all possible values of keys onto a range that is not too large; 
3. It must cover that range uniformly and minimize collisions. 
 
To devise such a function, we can try some “random” things akin to 
transformations used for generating random numbers in a specified range.  If the 
key is a string of characters, we can use some numeric codes (e.g. ASCII codes) 
for them.  We then chop the key into pieces and combine them together using 
bitwise or arithmetic operations — hence the term “hashing.”  The result must be 
an integer in the range from 0 to tableSize–1. 
 
Overly simplistic hash functions, such as simply truncating the key or converting it 
modulo the table size — 
 
    Hash(target.key) { return target.key % tableSize;} 

 
— may create unexpected clusters of collisions resulting from some peculiar 
clustering in the data.  Fortunately, we can evaluate our hash function on some 
simulated and real data before using it in an application. 

a a a 

There are two principal approaches to resolving collisions.  In the first approach, 
each entry in the hash table is itself implemented as a structure that can hold more 
than one element.  This approach is called chaining and the table entry is referred 
to as a bucket.  A bucket may be implemented as a linked list, a sorted array, or 
even a binary search tree (Figure 26-1).  This approach works well for densely 
populated hash tables. 
 
The second approach to resolving collisions is by storing the colliding element in a 
different slot of the same hash table.  This approach is known as probing.  We 
calculate the index into the table using the hash function as usual.  If the slot is 
already occupied, we use some probing function to convert that index into a new 
index, and repeat this step until we find a vacant slot. 
 
    ... 
    int index = Hash(target.key); 
    while (!isEmpty(hashTable[index])) 
        index = Probe(index); 
    hashTable[index] = target; 
    ... 
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                                                 Hash
                                              Function
                "Peach"                                           126

                                                   1

           122    123    124    125    126    127

                                             �

 Peach

 
Figure 26-1.   Resolving collisions in a hash table by chaining 

 
 
The same probing function, of course, must be used for finding an element: 
 
    int index = Hash(target.key); 
    while (!isEmpty(hashTable[index]) && 
           !Match(hashTable[index].key, target.key)) 
        index = Probe(index); 
    target = hashTable[index]; 
    ... 

 
The simplest form of the probing function is to increment the index by one or by 
some fixed number: 
 
inline int Probe(index) { return (index + INCR) % tableSize; } 

 
This is called linear probing (see Figure 26-2).  After the table has been in use for 
a while, linear probing may degrade the uniform distribution of the hash table 
population — a condition called clustering.  In so-called quadratic probing, the 
sequence of examined slots is 
 
 index, index+1, index+4, index+9, ... 
 
This can be implemented as: 
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    ... 
    int index = Hash(target.key); 
    int incr = 1; 
    while (!isEmpty(hashTable[index])) { 
        index = (index + incr) % tableSize; 
        incr += 2; 
    } 
    ... 

 
In more elaborate probing schemes, the next location may depend not only on the 
consecutive number of the attempt, but also on the value of the key.  In addition, 
some rehashing function may be used instead of  % tableSize: 
 
    ... 
    int index = Hash(target.key); 
    int attempt = 1; 
    while (!isEmpty(hashTable[index])) 
        index = Rehash(index, hashTable[index].key, attempt++); 
    ... 

 
Probing should be used only with relatively sparsely populated hash tables so that 
probing sequences are kept short.  The sequence of probing attempts required to 
insert an element is repeated each time we search for that element. 
 

                                                 Hash
                                              Function
               "Peach"                                            126

                                                    1

                                  Peach?

            125    126    127    128    129    130

                            Apple   Banana   Lemon    Orange                   Peach     Pl

                                    Nope...               Nope...              Yes!
 

Figure 26-2.   Resolving collisions in a hash table by linear probing 
 
 
As we can see, the performance of a search in a hash table varies with the details of 
implementation.  In the best case, the data access is instantaneous, O(1).  But with 
many collisions, the performance may deteriorate.  A badly designed hash table 
may result in all the elements clustered in just a few buckets or in very long 
probing sequences, and the number of comparisons may become as high as O(n). 
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26.6 Summary 
 
Sequential search is a universally applicable search method, but it is an O(n) 
method which requires n/2 comparisons on average and n comparisons in the worst 
case.  Binary search is much more efficient, with O(log2 n) comparisons in the 
worst case, but it requires keeping the data in a sorted array. 
 
Lookup tables have limited applicability.  They can be used when the keys can be 
easily mapped onto integers from a relatively narrow range.  Lookup tables 
provide constant access time, O(1), but may waste considerable space. 
 
In the hashing approach, the key is converted by some hashing function into an 
integer which is used as the index into a hash table.  The performance and space 
requirements for hash tables may vary widely depending on implementation.  In 
the best scenario, a hash table provides constant access time, O(1), but with a lot of 
collisions the performance may deteriorate.  One disadvantage of hash tables over 
a binary search tree or a sorted list is the difficulty of quickly traversing the table 
in ascending order of keys.  This may be a serious consideration in some 
applications. 
 
Practical solutions for the best data organization and most efficient search and 
retrieval methods often rely on some combination of methods. 
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27.1 Discussion 
 
To sort means to arrange a list of data elements in ascending or descending order.  
The data elements may be simply numeric values or some records ordered by keys 
for which an order relation has been defined. 
 
In addition to preparing a data set for easier access (e.g., binary search), sorting has 
many other applications.  One example is matching two data sets.  Suppose we 
want to merge two large mailing lists and eliminate the duplicates. This task is 
straightforward when the lists are sorted by name and address but may be 
unmanageable otherwise.  Another application may be simply presenting 
information to a user in an ordered manner.  A list of the user's files on a personal 
computer, for example, may be sorted by name, date, or size.  A word processor 
uses sorting for the automatic creation of an index or a bibliography for a book.  In 
large business systems millions of transactions (e.g., bank checks or credit card 
charges) are sorted daily before they are posted to customer accounts or forwarded 
to other payers. 
 
In the real world, the efficiency of sorting methods depends on the nature and 
volume of data, in particular whether the whole set of data fits into memory and 
whether the order of data elements is totally random or nearly sorted.  In this book 
we discuss different sorting algorithms only from the point of view of their 
theoretical efficiency.  In this simplified view, sorting algorithms fall into two 
broad categories: more simplistic algorithms with O(n2) time, and more efficient 
methods with O(n log n) time.  The former are represented by the so-called 
selection sort, insertion sort, and bubble sort algorithms.  The latter include 
mergesort, quicksort, and heapsort. 
 
All the programming examples in this section implement sorting an array v of n 
elements into ascending order.  The elements have the type SOMETYPE for which 
the operators <, >=, etc., are defined.  We also assume that a Swap(…) function is 
defined for two SOMETYPE elements: 
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template <class SOMETYPE> 
inline void Swap(SOMETYPE &x, SOMETYPE &y) 
 
{ 
    SOMETYPE temp = x;  x = y;  y = temp; 
} 

 
In real applications, instead of large records or strings, the array may contain only 
pointers to them.  Pointers can still access the values or keys efficiently, but 
swapping is faster because only the pointers swap places (Figure 27-1).  In the 
following sections, however, we will ignore these important details in order to 
focus more closely on the main ideas of various sorting algorithms. 
 
 

         Account No.                       Date              Amount       Merchant

...

...

...
4702 3532 1887 0203  06-01-98    94.50 Hyatt Re
...
...
...
...
4267 0508 2000 4341  06-01-98    19.95 Peking Garden
...
...

 
 

Figure 27-1.   Sorting large records through pointers 
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27.2 O(n2) Sorts 

27.2.1 Selection Sort 
 
The method of selection sort is to find the largest element in the array and swap it 
with the last element, then continue the process for the first  n–1 elements: 
 

  SORTS.CPP            � 
template <class SOMETYPE> 
void SelectionSort (apvector<SOMETYPE> &v) 
 
{ 
    int i, iMax, n = v.length(); 
 
    while (n > 1) { 
 
        // Find the largest element: 
        for (iMax = 0, i = 1;   i < n;   i++) 
            if (v[i] > v[iMax]) iMax = i; 
 
        // Swap it with the last element: 
        Swap(v[iMax], v[n–1]); 
 
        n––; 
    } 
} 

 
Selection sort is the slowest and the most predictable of all: it always takes 
 n(n–1)/2 comparisons and 3(n–1) moves (counting each swap as 3 moves). 
 

27.2.2 Insertion Sort 
 
In an insertion sort, we keep the beginning of the array sorted.  Initially the 
“sorted” part is just the first element, v[0].  When the first i–1 elements are in 
order, we insert the i-th element among them in the right place, thus making sure 
that the first i elements become ordered.  The process continues until we process 
the last element in the array: 
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  SORTS.CPP            � 
template <class SOMETYPE> 
void InsertionSort (apvector<SOMETYPE> &v) 
 
{ 
    int i, j, n = v.length(); 
    SOMETYPE vCurrent; 
 
    for (i = 1;   i < n;   i++) { 
 
        // Save the current element: 
        vCurrent = v[i]; 
 
        // Find location j where it should be inserted 
        //   among the first i–1 elements: 
        for (j = 0;   j < i;  j++) 
            if (v[j] >= vCurrent) 
                break; 
 
        // Shift all elements between j and i one place to the right: 
        for (int k = i–1;  k >= j;  k––) 
            v[k+1] = v[k]; 
 
        // Insert saved element where it belongs: 
        v[j] = vCurrent; 
    } 
} 

 
This method works better for linked lists, because inserting an element into an 
array may require a lot of moves.  In the worst case, this algorithm takes n(n–1)/2 
comparisons, but in the best case it takes only n–1 comparisons.  On average, for a 
random list, an insertion sort takes (n2+n–2)/4 or n2/4 + O(n) comparisons.   
 
Interestingly, the worst case (in terms of the number of comparisons) happens 
when the list is already sorted!  The best case happens when the list is sorted in 
reverse order.  The reason for this peculiar behavior is that the above code 
traverses the list from the beginning forward in order to insert the element.  If we 
are dealing with a singly linked list, that is our only option.  For a doubly linked 
list or an array, however, we can traverse it backwards, starting at the end.  This 
simplifies the code and makes the algorithm's behavior more intuitive:  
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  SORTS.CPP            � 
template <class SOMETYPE> 
void InsertionSort2 (apvector<SOMETYPE> &v) 
 
// A variation of insertion sort 
//   with scanning the sublist backwards from i–1 down to 0 
  
{ 
    int i, j, n = v.length(); 
    SOMETYPE vCurrent; 
 
    for (i = 1;   i < n;   i++) { 
 
        // Save the current element: 
        vCurrent = v[i]; 
 
        // Going backwards from v[i–1], shift elements to the 
        //   right until you find an element v[j] <= vCurrent: 
        for (j = i–1;   j >= 0;  j––) { 
            if (v[j] <= vCurrent) 
                break; 
            v[j+1]  = v[j]; 
        } 
 
        // Insert saved element after v[j]: 
        v[j+1] = vCurrent; 
    } 
} 

 
In this modified version, the best case is when the array is already sorted.  Then it 
takes only n–1 comparisons and 2(n–1) moves; in other words, the algorithm 
works in O(n) (i.e., linear) time.  In fact, this is an efficient method for fixing 
minor disorder in a nearly sorted array.  The average case is still about n2/4 
comparisons and about the same number of moves, so it remains an O(n2) 
algorithm. 
 

27.2.3 Bubble Sort 
 
The idea of bubble sort is to traverse the array swapping all the pairs of adjacent 
elements that are out of order.  At the end of the first pass the largest element 
“bubbles up” to the end of the array.  At the same time we get a chance to check 
whether all the elements are already in the right order.  Then the process continues 
for the first n–1 elements.  In this algorithm it makes sense to take advantage of the 
opportunity to quit early when the array is already sorted: 
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  SORTS.CPP            � 
template <class SOMETYPE> 
void BubbleSort (apvector<SOMETYPE> &v) 
 
// Quits early when the array is confirmed to be in order. 
 
{ 
    int i, n = v.length(), disorder = n; 
 
    while (disorder) { 
 
        disorder = 0; 
 
        // Bubble up and mark any disorder: 
        //   (When n becomes 1, the "for" loop is not 
        //    executed, "disorder" remains 0, and the "while" 
        //    loop is broken.) 
 
        for (i = 1;   i < n;   i++) { 
            if (v[i] < v[i–1]) { 
                Swap(v[i], v[i–1]); 
                disorder++; 
            } 
        } 
        n––; 
    } 
} 

 
In the worst case (when the array is in reverse order) bubble sort takes n(n–1)/2 
comparisons and as many swaps.  In the best case, when the array is already sorted, 
the algorithm requires only n–1 comparisons, so bubble sort can verify that the 
array is in order and fix a couple of swapped elements in linear time. 
 

27.3 O(n log n) Sorts 
 
Our experience with binary search trees and heaps suggests that there must be 
more efficient sorting methods than O(n2).  After all, it takes an average of only 
O(log n) comparisons to insert an element into a binary search tree, and we know 
that inorder traversal of the tree produces all the elements in ascending order.  So if 
we put all the elements from our list into a “magic box,” a binary search tree, we 
can pull them out in ascending order in just O(n log n) steps.  The same applies to 
heaps: we can put all the elements from our list into a heap and then pull them out 
one by one from the top of the heap in descending order.  These ideas are the basis 
for two sorting algorithms, treesort and heapsort, discussed later in this section.  In 
any case, all O(n log n) sorting algorithms are based on the general “divide and 
conquer” principle, of which mergesort is the most direct illustration. 
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27.3.1 Mergesort 
 
If we have two sorted arrays, we can combine or merge them into one sorted array 
in linear time, that is, in O(n) comparisons and moves where n is the total number 
of elements.  This fact is the basis of a sorting method called mergesort, which is 
best described in recursive terms. 
 
To sort an array: 

1. Split it into two equal (or almost equal) halves; 
2. Sort the first half; 
3. Sort the second half; 
4. Merge the two halves. 
 

The base case occurs when the array has only one element.  For better 
performance, we can treat an array of two elements as another base case. 
 
One problem with mergesort is that merging two arrays requires a temporary 
working space at least the size of the combined array.  (This is not true for linked 
lists, but linked lists need extra memory to store link pointers.)  Fortunately, there 
are no nested calls to the Merge(…) function, so we can use one work array 
created outside of the Merge(…) function and reuse the same memory for all 
Merge(…) calls.   
 
It is convenient to collect all the related mergesort definitions into one MERGESORT 
class: 
 

  SORTS.CPP            � 
// MERGESRT.H 
 
template <class SOMETYPE> 
class MERGESORT { 
 
  public: 
 
    void Sort (apvector<SOMETYPE> &v); 
 
  private: 

Continued    ® 
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    apvector<SOMETYPE> work; 
 
    void RecursiveSort(apvector<SOMETYPE> &v, int i1, int i2); 
    void Merge(apvector<SOMETYPE> &v, int i1, int m, int i2); 
}; 
 
//**************************************************************** 
 
template <class SOMETYPE> 
void MERGESORT<SOMETYPE>::Sort (apvector<SOMETYPE> &v) 
 
// Sorts array v in ascending order. 
 
{ 
    int n = v.length(); 
    work.resize(n); 
    RecursiveSort(v, 0, n–1); 
    work.resize(0); 
} 
 
template <class SOMETYPE> 
void MERGESORT<SOMETYPE>::RecursiveSort (apvector<SOMETYPE> &v, 
                                                 int i1, int i2) 
 
// Sorts elements of v between i1 and i2 in ascending order. 
 
{ 
    int m; 
 
    if (i2 – i1 <= 1) {           // Base case: 
        if (i2 – i1 == 1 && v[i2] < v[i1]) 
            Swap(v[i2], v[i1]); 
    } 
    else {                        // Recursive case: 
        m = (i2 + i1) / 2; 
        RecursiveSort(v, i1, m); 
        RecursiveSort(v, m + 1, i2); 
        Merge(v, i1, m, i2); 
    } 
} 
 
//**************************************************************** 
 

Continued    ® 
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template <class SOMETYPE> 
void MERGESORT<SOMETYPE>:: 
        Merge(apvector<SOMETYPE> &v, int i1, int m, int i2) 
 
// Merges sorted segments of the array v between i1 and m 
//   and between m+1 and i2 into one sorted segment between i1 and i2. 
 
{ 
    int j1 = i1, j2 = m + 1, j; 
 
    // Merge two arrays into the work array: 
    for (j = i1;   j <= i2;   j++) { 
        if (j1 <= m && j2 <= i2) { 
            if (v[j1] < v[j2]) 
                work[j] = v[j1++]; 
            else 
                work[j] = v[j2++]; 
        } 
        else if (j1 <= m) 
            work[j] = v[j1++]; 
        else // if (j2 <= i2) 
            work[j] = v[j2++]; 
    } 
 
    // Copy work back to v: 
    for (j = i1;   j <= i2;   j++) 
        v[j] = work[j]; 
} 

 
This class may be used as follows: 
 
... 
#include "mergesrt.h" 
... 
 
int main() 
 
{ 
    apvector<int> array(100); 
    MERGESORT<int> mergesort; 
    ... 
    mergesort.Sort(array); 
    ... 
} 

 
Mergesort never takes more than n log2 n – n + 1 comparisons, so it is an 
O(n log n) algorithm.  Its performance is virtually the same for the best case 
(presorted array) and the worst case. 
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27.3.2 Quicksort 
 
Quicksort was invented by C.A.R. Hoare.*  Although its performance is less 
predictable than mergesort’s, it averages a faster time for random arrays than other 
methods and requires no temporary work space. 
 
The main idea of the algorithm is to split the array into left and right parts in such a 
way that all the elements in the right part are larger than all the elements in the left 
part, then sort each part (recursively) to produce a sorted array.  Obviously, we 
have to rearrange the elements of the array to achieve the desired partitioning.  
First we chose an element for a “pivot.”  A simple procedure that works in linear 
time allows us to find a new place for the pivot and rearrange other elements so 
that all the elements to the left of the pivot are less than or equal to the pivot, and 
all the elements to the right of the pivot are greater than or equal to the pivot.  This 
is reminiscent of binary search trees, in which all the elements of the left subtree 
are less than or equal to the root, and all the elements of the right subtree are 
greater than or equal to the root. 
 
The partitioning procedure works as follows.  We keep track of two indices, j1 
and j2.  Initially j1 is set to the index of the first element and j2 is set to the 
index of the last element of the array.  If v[j1] is less than or equal to the pivot, 
v[j1] is already on the correct (left) side — we leave it alone and increment j1.  
Otherwise, if v[j2] is greater or equal to the pivot, v[j2] is already on the 
correct (right) side — we decrement j2.  The only remaining possibility is that 
both v[j1] and v[j2] are on the wrong sides.  Then we swap them and advance 
both j1 and j2.  The process continues until j1 and j2 converge and overlap.  
The place where they converge marks the new pivot location.  The final step is to 
actually place the pivot into its new location.  This is necessary because we want to 
exclude the pivot element from future sorting, thus reducing the size of the 
recursive task.  We swap the pivot with either v[j1] or v[j2], depending on 
which side of the array it comes from. 
 
In random arrays, the choice of the pivot element is not very important.  It is 
acceptable to take the first element of the array as a pivot.  Our implementation, 
presented below, is more general.  The first line in the Split(…) function — 
 
    int p = ... 

 
— determines which element is chosen as the pivot.  In our code it is set to the 
middle element, but the rest of the code would work with any other formula. 
 
                                                      
* C.A.R. Hoare. Quicksort. Comp. J., Vol. 5, No. 1 (1962), pp. 10-15. 
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For best performance we want to split the array into parts of nearly equal sizes.  If 
the pivot happens to be the smallest or the largest element of the array, however, 
the split is not much of a split: one of the parts is simply empty.  If this happens 
repeatedly, quicksort degenerates into a slow recursive version of selection sort.  
This is the case, for example, when the array is initially sorted, and we always 
choose the first element as the pivot.  It may be worthwhile to explore better ways 
of choosing the pivot.  For example, we may examine several elements of the array 
(e.g. first, last, and middle) and chose the median element (i.e. the element whose 
value falls in the middle of the others) as the pivot. 
 
In the code below, the quicksort algorithm is implemented as a class QUICKSORT.  
The private Split(…) function partitions the array and returns the new location of 
the pivot.  The RecursiveSort(…) function first calls Split(…), then calls 
itself recursively to sort the left and right parts.  The pivot is excluded from future 
sorting, so both parts are smaller than the initial array.  This reduces the size of the 
task and assures that recursion eventually stops.  The base case is when the number 
of elements left to sort is 0 or 1.  For improved performance, we have also added 
another base case, when there are only two elements. 
 

  SORTS.CPP            � 
// QUICKSRT.H 
 
template <class SOMETYPE> 
class QUICKSORT { 
 
  public: 
 
    void Sort (apvector<SOMETYPE> &v); 
 
  private: 
 
    void RecursiveSort(apvector<SOMETYPE> &v, int i1, int i2); 
    int Split(apvector<SOMETYPE> &v, int i1, int i2); 
        // Returns the new location of the pivot element. 
 
}; 
 
//**************************************************************** 

Continued    ® 
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template <class SOMETYPE> 
void QUICKSORT<SOMETYPE>::Sort (apvector<SOMETYPE> &v) 
 
// Sorts array v in ascending order. 
 
{ 
    int n = v.length(); 
    RecursiveSort(v, 0, n–1); 
} 
 
template <class SOMETYPE> 
void QUICKSORT<SOMETYPE>::RecursiveSort (apvector<SOMETYPE> &v, 
                                                 int i1, int i2) 
 
// Sorts elements of v between i1 and i2 in ascending order. 
 
{ 
    int p; 
 
    if (i2 – i1 <= 1) {  // Base case: 
        if (i2 – i1 == 1 && v[i2] < v[i1]) 
            Swap(v[i2], v[i1]); 
    } 
    else {         // Recursive case: 
        p = Split(v, i1, i2); 
        RecursiveSort(v, i1, p–1); 
        RecursiveSort(v, p+1, i2); 
    } 
} 
 
//**************************************************************** 
 
template <class SOMETYPE> 
int QUICKSORT<SOMETYPE>::Split(apvector<SOMETYPE> &v, int i1, int i2) 
 
// Takes one of the values (here v[(i2+i1)/2]) as "pivot" 
//   and splits the segment of the array v between i1 and i2 
//   into two parts so that: 
//      v[p] == pivot 
//      v[j] <= pivot for j < p 
//      v[j] >= pivot for j > p 
// Returns p; 
 
{ 
    int p = (i2 + i1) / 2;  // In this version the "pivot" value is the 
                            //   middle element 
 
    SOMETYPE pivot = v[p]; 
 
    int j1 = i1, j2 = i2; 
 

Continued    ® 
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    // Increment j1 if v[j1] <= pivot; decrement j2 if v[j2] >= pivot; 
    //   otherwise swap v[j1] and v[j2] and advance both j1 and j2: 
    while (j1 <= j2) { 
        if (v[j1] <= pivot) 
            j1++; 
        else if (v[j2] >= pivot) 
            j2––; 
        else { 
            Swap(v[j1], v[j2]); 
            j1++; 
            j2––; 
        } 
    } 
 
    // Now v[j1] and v[j2] are adjacent elements; j1 > j2. 
    //   Swap v[j1] or v[j2] with the pivot, making sure that 
    //   the swapped element remains on the same side of the pair: 
    if (p < j2) { 
        Swap(v[p], v[j2]); 
        p = j2; 
    } 
    else if (p > j1) { 
        Swap(v[p], v[j1]); 
        p = j1; 
    } 
    return p; 
} 

 
On average, quicksort works in O(n log n) time, and, according to some published 
benchmarks, beats mergesort almost by a factor of two. 
 
As we have mentioned earlier, when the partitions are very uneven, quicksort can 
degenerate into slow O(n2)-time performance.  This situation creates another 
pitfall: if we are not careful, the depth of recursion may become O(n) instead of 
O(log n), and the function may overflow the system stack for a large array. 
 
This is one of the finer points of recursive programming.  Fortunately, there is a 
good solution.  In quicksort, the last call to RecursiveSort(…) is actually a case 
of tail recursion (see Section 19.4).  Therefore it can be easily replaced with 
iteration.  The trick is that the maximum depth of  recursion may differ 
dramatically depending on which part of the array we handle recursively and 
which part iteratively.  The safe way is to process the shorter part of the array 
recursively.  This assures that the maximum depth of recursion never exceeds 
log2 n frames.  Thus, for “real world” use, the RecursiveSort(…) function in 
quicksort should be rewritten like this: 
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  SORTS.CPP            � 
template <class SOMETYPE> 
void QUICKSORT<SOMETYPE>::RecursiveSort (apvector<SOMETYPE> &v, 
                                                 int i1, int i2) 
 
// Modified to assure the maximum recursion depth is O(log n). 
 
{ 
    int p, m; 
 
    while (i2 – i1 >= 1) { 
        if (i2 – i1 == 1) { // Base case 
            if (v[i2] < v[i1]) 
                Swap(v[i2], v[i1]); 
            break; 
        } 
        else {  // Recursive case 
            p = Split(v, i1, i2); 
            m = (i2 + i1) / 2; 
            if (p > m) { 
                RecursiveSort(v, p+1, i2); 
                                      // Process recursively the 
                                      //   right part 
                i2 = p–1;             // Continue iteratively with 
                                      //   the left part 
            } 
            else { 
                RecursiveSort(v, i1, p–1); 
                                      // Process recursively the 
                                      //   left part 
                i1 = p+1;             // Continue iteratively with 
                                      //   the right part 
            } 
        } 
    } 
} 

 
The same principle applies when we implement quicksort without recursion by 
using our own stack.  We can process one part of the array immediately while 
saving the address and the length of the other part on the stack.  To reduce the risk 
of stack overflow, we have to push the longer part on the stack and process the 
shorter part immediately. 
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27.3.3 Treesort and Heapsort 
 
The idea of the treesort is simply to use a binary search tree for sorting.  We start 
with an empty binary search tree and insert all the elements of our array into the 
tree one by one.  (We are using a generalized “binary search tree” which allows 
duplicate index values, and we do not really use it for searching.)  Then we 
traverse the tree in order, retrieve the elements in ascending order, and place them 
back into the array. 
 
This method takes an average of O(n log n) comparisons, but it can degenerate into 
O(n2) comparisons, particularly when the initial array is already sorted.  Treesort 
requires additional space for building the tree.  In general, there is little to 
recommend this obvious method, especially in comparison with quicksort and 
heapsort. 
 
Heapsort, proposed by J. Williams,* takes advantage of the array representation of 
heaps and the O(log n) time it takes to insert an element into a heap and remove 
the largest element from the top of a heap.  Heapsort can be performed within the 
original array without using additional space. 
 
As we know (Chapter 24), a heap is a complete binary tree in which the root of the 
tree contains the largest element and each node contains the largest element of the 
tree growing from that node.  A heap can be represented as an array; for the sake of 
convenience when using heaps, we index the elements of the array starting from 1 
rather than 0.  The element with the index 0 is not used.  The “Reheap” procedure 
fixes a heap in which all elements are in order except the root.  For the heapsort, it 
is actually more efficient not to build the heap from scratch but to fix the original 
array.  This can be accomplished by applying the Reheap procedure to all nodes 
that have children, starting at the lowest level and proceeding towards the root.  In 
the second phase of the algorithm we remove the elements one by one from the top 
of the heap and store them in reverse order starting at the end of the array.  To do 
that, we swap the root (the first element) with the last element, decrement the size 
of the array, and apply the same Reheap procedure to fix the heap. 
 
In the following code, heapsort is implemented as a class HEAPSORT: 
 

                                                      
* J.W.J. Williams. Heapsort (Algorithm 232). Comm. ACM, Vol. 7, No. 6 (1964), pp. 347-48. 
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  SORTS.CPP            � 
// HEAPSORT.H 
 
template <class SOMETYPE> 
class HEAPSORT { 
 
  public: 
 
    void Sort(apvector<SOMETYPE> &v); 
       // Sorts elements v[1] through v[n].  v[0] is not used. 
 
  private: 
 
    void Reheap(apvector<SOMETYPE> &v, int i, int n); 
 
}; 
 
//**************************************************************** 
 
template <class SOMETYPE> 
void HEAPSORT<SOMETYPE>::Reheap(apvector<SOMETYPE> &v, int i, int n) 
 
//  Fixes the (sub)heap rooted at the node v[i], assuming that 
//    all the nodes below it (all its descendants) already 
//    satisfy the heap ordering property. 
//  n is the largest possible index of an element in the heap: 
//    v[j] is not in the heap when j > n (v[0] is unused). 
 
{ 
    SOMETYPE x = v[i];  // Save the root value. 
 
    int iParent = i; 
    i *= 2;             // Set i to left child. 
    while (i <= n) { 
        // Set i to the right child, if it is larger: 
        if (i < n && v[i] < v[i+1]) 
            i++; 
 
        if (v[i] <= x) 
            break; 
 
        v[iParent] = v[i];     // Move the child up 
        iParent = i;           // v[iParent] is now vacant 
        i *= 2;                // i set to its left child 
    } 
    v[iParent] = x; 
} 
 
//**************************************************************** 
 

Continued    ® 
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template <class SOMETYPE> 
void HEAPSORT<SOMETYPE>::Sort(apvector<SOMETYPE> &v) 
 
// Sorts elements v[1] through v[n]in ascending order 
//   (v[0] is not used). 
 
{ 
    int i, n = v.length() – 1; 
    SOMETYPE x; 
 
    // Fix heaps rooted in all nodes with children, going 
    //   from the lowest–rightmost such node and proceeding 
    //   left and up to the root.  v[i] is a leaf for any i > n/2, 
    //   and v[n/2] is the parent of v[n], and therefore not a leaf. 
    //   So we start with v[n/2]. 
 
    for (i = n/2;   i >= 1;   i––) 
        Reheap(v, i, n); 
 
    // Remove elements from the top of the heap and store them 
    //   in reverse order starting from the end of the array: 
    while (n > 1) { 
        Swap(v[1], v[n]); 
        n––; 
        Reheap(v, 1, n); 
    } 
} 

 

27.4 Radix Sort 
 
Is it possible to sort faster than in O(n log n) time?  In general, a theoretically 
proven result is that any sort based on a comparison of keys will take, on average, 
at least O(n log n) comparisons.  It is also true that for searching methods based on 
comparison of keys, the best time is O(log n).  And yet, lookup tables and hash 
tables allow us to do better. These techniques, which tie the location of data 
elements to the values of their keys, let us find data in constant time, O(1).  Similar 
strategies can be applied to sorting. 
 
Let us start with a simple case where we have a large list of data elements but all 
their keys have values from a small set; for example, integers between 0 and 9.  Let 
us apply the lookup or hashing idea to this situation.  We can create 10 buckets, 
corresponding to the 10 possible key values.  In one pass through the data we add 
each element to the appropriate bucket.  Then we scan through the ten buckets in 
ascending order and collect all the elements together.  The result will be the list 
sorted in the ascending order.  It is easier to implement this method for linked lists, 
because combining the buckets into one list means changing only ten pointers.  
The time of this method is O(n) because we handle each element once. 
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Now let us assume that all the keys are integers in the range between 0 and 99999.  
Suppose memory limitations do not allow us to have 100000 buckets.  The radix 
sort technique lets us sort the list one digit at a time: we can complete the task with 
only 10 buckets, but we will need five passes through the data.  We have to make 
sure that the buckets preserve the order of inserted elements; for instance, each 
bucket can be a list with the elements inserted at the end.  We start with the least 
significant digit in the key and distribute the data elements into buckets based on 
that digit.  When we are done, we scan all the buckets in ascending order and 
collect the data into one list.  We then take the second digit (the tens digit) and 
repeat the process.  We have to make as many passes through the data as there are 
digits in the key.  After the last pass, the list is sorted. 
 
The radix sort works like magic! (In fact it can be conveniently demonstrated on a 
deck of 16 cards of four suits and four ranks.)  There is also a mathematical proof 
of its correctness, of course.  The method works for data with any keys that permit 
positional representation.  For integers, using hexadecimal digits or whole bytes is 
actually more appropriate than decimal digits.  A program that sorts words in 
lexicographic order can perform a radix sort with a bucket for each letter or 
symbol.  In the latter case, we have to pad all the words with blanks to the 
maximum length and start sorting from the last character position. 
 
A radix sort takes O(n) time, but the constant coefficient depends on the number of 
positions in the key.  We have to remember that log2 n grows rather slowly, so if 
your key has ten positions and you are sorting less than 1000 items, you would 
probably do better with conventional O(n log n) algorithms.  Also, the radix sort is 
not very practical for arrays because it requires a lot of extra space and a lot of 
moves.  It makes more sense for linked lists, because it is easy to unlink an element 
and link it to the end of a bucket list and then collect all the bucket lists back into 
one list.  The implementation and proof of correctness for the radix sort is left for a 
lab exercise. 
 

27.5 Summary 
 
In addition to their utility in building computer applications, sorting algorithms 
provide a fertile field for formulating and studying general properties of algorithms 
and comparing their efficiency. 
 
Selection sort: 

While n is greater than 2: find the largest element, swap it with the last element 
of the array, decrement n.  O(n2) comparisons. 
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Insertion sort: 
Starting at i=2, for each element v[i] find its place in order among the first   i–
1 elements, shift the required number of elements to the right to make room, 
and insert v[i].  O(n2) comparisons, but can be O(n) for a nearly sorted array. 

 
Bubble sort: 

While any elements are out of order: traverse the array from the beginning to n, 
swapping all pairs of adjacent elements that are out of order; then decrement n.  
O(n2) comparisons, but can be O(n) for a nearly sorted array. 

 
Mergesort: 

Split the array into two halves.  (Recursively) sort the first half and the second 
half, then merge the two sorted halves. O(n log n) comparisons; needs a 
temporary work space of n elements. 

 
Quicksort: 

Choose a “pivot” element. Running from both ends of the array and swapping 
the elements if necessary, find a new place for the pivot and rearrange the 
elements so that all the elements to the left of the pivot are less than or equal to 
the pivot, and all the elements to the right of the pivot are greater than or equal 
to the pivot.  (Recursively) sort the left part and the right part, excluding the 
pivot itself.  O(n log n) comparisons, on average, with very good benchmarks, 
but may sometimes degenerate into O(n2) time. 

 
Heapsort: 

First: pretend that your array represents a heap and, to fix the order of elements, 
repeat the “Reheap” procedure for all elements, skipping the leaves and going 
from the bottom up.  Second: while n is greater than 1: swap the top element 
with the last element of the array, decrement n, and perform Reheap for the root 
(first element).  O(n log n) comparisons. 

 
Radix sort: 

Starting from the least significant digit (or the rightmost letter) in the key: 
distribute all elements into buckets that correspond to possible values of that 
digit (or letter) using a FIFO method. Scan all the buckets in ascending order 
and collect them back into one list.  Repeat for each position in the key.  O(n)⋅d 
operations, where d is the number of positions in the key.  More appropriate for 
linked lists. 

 
There are many more sorting algorithms and variations of the above algorithms, 
but the methods described here cover a representative basic set that has become 
standard in college computer science curricula over the years. 
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28.1 Discussion 
 
In conventional programming a program is thought of as a set of procedures 
applied to some data structures.  By comparison, in the realm of Object-Oriented 
Programming (OOP), a program is thought of as a set of actively interacting 
objects.  In C++, objects are represented as instances of classes.  An object can be 
a variable of some class type declared directly or addressed through a pointer 
returned by the new operator. One of the most difficult tasks in object-oriented 
software design is to define the objects and their relationships. 
 
OOP languages explicitly support one common type of relationship, the 
hierarchical taxonomy.  Taxonomy is a system of classification in which an object 
can be defined as a special case, “a kind of” another object.  In Linnaeus’ 
zoological taxonomy, for example, a person is a kind of primate which is a kind of 
mammal which is a kind of animal.  Taxonomies have been one of the main ways 
of thinking in natural science for centuries, and they undoubtedly reflect the 
inclination of the human mind toward descriptive hierarchies.  In software, ideas of 
hierarchical classification can be traced to Artificial Intelligence, a branch of 
computer science that strives to model intelligent systems and rational behaviors.  
AI uses taxonomies to create formal representations of some aspects of the real 
world. 
 
In object-oriented programming languages, an object can be formally 
declared to be “a kind of” another object.  This feature is called 
inheritance.  In C++, if class D inherits from class B, all members of B, 
both data and functions, become members of D.  B is referred to as the 
base class and D is referred to as the derived class. 

 
The derived class may include additional data members and member functions and 
can redefine some of the member functions inherited from the base class.  The 
derived class itself may serve as a base class for the next derivation, and so on.  In 
this way, we can build a hierarchy of classes, each derived from some class of a 
previous level.  The inheritance proceeds from more general, abstract classes to 
more specialized classes.  Figure C-1 in Appendix C shows the C++ hierarchy for 
the standard stream I/O classes.  Defining class hierarchies brings some order into 
the multitude of all the defined classes in a project. 
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On a more practical level, inheritance can also be viewed as a convenient 
tool for reusing code.  A derived class may have all the functionality of 
the base class with some data members added and some member 
functions tweaked for slightly different functionality. 

 
The syntax for defining a derived class, which we will explain in greater detail 
later in this chapter, is as follows: 
 
class D : public B { 
    ...    // Additional members for the derived class D. 
}; 

 
The base class B must be defined (or #include-ed) above the derived class D. 
 
Inheritance is a fairly simple concept, but its implementation in a specific 
programming language poses many questions and challenges to language 
designers: 
 
• What is the difference between inheritance and embedding the base class as a 

member, and how is it implemented syntactically? 
• Should private members of the base class be accessible within the derived 

class? 
• If a function is redefined in the derived class, is it possible to call the original 

function of the base class from the derived class functions? 
• How do the constructors interact?  How can the constructor of a derived class 

pass arguments to the constructor of the base class? 
• Can the variables of the base class type be assigned values of the derived class 

type, and vice versa?  Can pointers of the base class type point to objects of the 
derived class type?  

• How can an object always know to call the appropriate member function, even 
if it is accessed through a pointer of another type? 

 
In the following sections we will examine these questions and the way C++ 
handles them. 
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28.2 Inheritance vs. Embedding 
 
At the outset, we have to make a clear semantic and syntactic distinction between 
inheritance and embedding and provide some guidelines for their use. 
 
As we know, a class may include as one of its members another class: 
 
class D { 
    ... 
    class B; 
    ... 
};   

 
This structure represents a relationship of a part to a whole, or inclusion: D “has a” 
B.  Inheritance, on the other hand, represents a relationship of specialization: D “is 
a kind of” B.  Each of these relationships has its proper place in object-oriented 
design. 
 
Let us consider, for example, a class RECT which describes a rectangle through its 
upper left corner, width and height.  It has an embedded member class, POINT — 
its upper left corner — together with integer members width and height: 
 
class POINT { 
    ... 
    int x; 
    int y; 
    ... 
    void MoveTo(int ax, int ay); 
    ... 
}; 
 
class RECT { 
    ... 
    POINT ulCorner; 
    int width; 
    int height; 
    ... 
    void MoveTo(int ax, int ay); 
    ... 
}; 

 
RECT is not “a kind of” POINT, so it would be wrong to derive it from POINT. 
When POINT ulCorner is embedded into RECT, its data members and member 
functions have to be accessed through ulCorner.  For example: 
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void RECT::MoveTo(int ax, int ay) 
 
{ 
    ulCorner.x = ax; // works only if x and y are public in POINT 
    ulCorner.y = ay; 
} 

 
or, better: 
 
void RECT::MoveTo(int ax, int ay) 
 
{ 
    ulCorner.MoveTo(ax, ay); 
} 

 
In the latter code fragment, RECT's MoveTo(…) function calls POINT's MoveTo(…) 
function.  We have intentionally given them the same name to show that there is no 
conflict. 
 
Embedding one class into another causes all kinds of problems with public and 
private members, but they can be worked out one way or another.  Useful 
functions of the embedded class can be channeled through the corresponding 
functions of the encompassing class, like the MoveTo(…) function above.  This is 
the prescribed way of laying out classes related to each other as a part to a whole. 
 
A conceptually and stylistically incorrect but also effective method would be to 
derive RECT from POINT, the taxonomic relationship notwithstanding.  Then we 
would write: 
 
class RECT : public POINT { 
    ... 
    int width; 
    int height; 
    ... 
}; 

 
In this case, RECT directly inherits x, y, and the MoveTo(…) function, so these 
members of POINT implicitly become members of RECT and there is no need to 
mention them explicitly in RECT's definition.  Sooner or later, however, we will 
have to pay the price for (so to speak) cutting corners.  The fact that the point is 
used as the upper left corner is not documented anywhere in the above RECT class 
definition.  And what if we want to add another point, say the lower right corner? 
 
In some situations, the temptation to derive from some general-purpose class — 
even though your class is not at all “a kind of” that class but simply wants to 
inherit some general functionality — is too great to resist.  Suppose you need some 
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uniform error handling capability in each of the classes of the graphics package 
you are working on.  You would be tempted to write a class ERROR and derive 
each of your classes from it.  This would be poor design from the OOP point of 
view.  More elegantly, you could create an abstract base class GRAPHOBJECT and 
place it at the root of the hierarchy for all graphics classes.  This class could 
provide error handling as well as some other very general functions related to 
graphics objects.  As we will explain in Section 28.7, these functions can be pure 
virtual functions that have nothing but a prototype and an indicator that they will 
be redefined at the lower levels of the class hierarchy. 
 

28.3 Member Access in Derived Classes 
 
The next question that has to be answered is how encapsulation relates to 
inheritance and, in particular, whether a derived class should have access to the 
private members of its base class.  In C++ a third type of member access is 
introduced as a compromise: the protected member.  Protected members act just 
like private members with the only difference that they are directly accessible 
within all the derived classes at all levels of the class hierarchy.  Private members 
remain inaccessible to derived classes. 
 
For additional flexibility, C++ supports different types of inheritance.  In this book 
we consider only public inheritance, in which all three types of class members, 
private, protected, and public, retain their access type in the derived classes.  This 
is by far the most often used type of inheritance.  Public inheritance is indicated by 
the keyword public in the class derivation syntax: 
 
class D : public B { // D derived from B through public inheritance 
    ... 
}; 

 
In private and protected inheritance, protected and public members in the base 
class change their access properties in the derived classes. 
 
Protected members should be used instead of private members in a class’s 
definition if there is a chance that another class may be eventually derived from it, 
which is almost always the case. 
 
In the following example, we derive a class FILLEDRECT from the class RECT.  In 
addition to the RECT members, FILLEDRECT contains the color and fill pattern for 
its interior: 
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enum COLOR {BLACK, RED, GREEN, BLUE, WHITE}; 
enum FILL {EMPTY, HATCH, SOLID}; 
 
class POINT { 
 
  protected: // Accessible only in classes derived from POINT 
 
    int x;    
    int y; 
 
  public:    // Accessible everywhere 
 
    ... 
    int GetX() {return x;} 
    int GetY() {return y;} 
    ... 
    void MoveTo (int ax, int ay) {x = ax; y = ay;} 
    void MoveRel (int dx, int dy) {x += dx; y += dy;} 
    ... 
}; 
 
class RECT { 
 
  protected: // Accessible only in classes derived from RECT 
 
    POINT ulCorner; 
    int width; 
    int height; 
    COLOR color; 
 
  public:    // Accessible everywhere 
 
    ... 
    void MoveTo (int ax, int ay) {ulCorner.MoveTo(ax, ay);} 
    void MoveRel (int dx, int dy) {ulCorner.MoveRel(dx, dy);} 
    ... 
}; 
 
class FILLEDRECT : public RECT { 
 
  protected: 
 
    // Implicitly includes all protected members from RECT: 
    //    ulCorner, width, height, and color 
 
    FILL fill; 
    COLOR fillcolor; 
 
  public: 

Continued    ® 
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    // Implicitly includes all public members from RECT: 
    //    MoveTo(), etc. 
 
    ... 
    void SetFillPattern(FILL f) {fill = f;} 
    void SetFillColor(COLOR fc) {fillcolor = fc;} 
    ... 
}; 

 
The RECT members ulCorner, width, height, and color are directly 
accessible within the FILLEDRECT member functions.  ulCorner members x and 
y are not directly accessible within RECT or FILLEDRECT, because they are not 
RECT members.  Nor are they accessible indirectly through ulCorner.x, 
ulCorner.y, because they are not public members in POINT. They can be 
accessed only through the ulCorner.GetX() and ulCorner.GetY() calls. 
 
The x and y members of POINT in the above code are defined as protected, as 
opposed to private.  This does not affect the RECT definition, but it may be useful 
in the future if we decide later to derive a new class from POINT, such as a class 
PIXEL.  Protected POINT members x and y will then be directly accessible to the 
PIXEL member functions: 
 
class PIXEL : public POINT { 
 
  protected: 
 
    // Implicitly includes protected members of POINT: x and y 
 
    int color; 
 
  public: 
 
    // Implicitly includes all public members of POINT 
    ... 
    void SetColor(int a_color); 
    void Draw(); 
    ... 
}; 

 
Member access privileges in derived classes in C++ may be confusing and lead to 
a lot of compiler errors and general frustration among beginners.  Some might be 
even tempted to declare “everything public” and “forget about it.”  But this would 
violate encapsulation and could make life more difficult for programmers who 
“inherit” the task of maintaining your code. 
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28.4 Redefining Member Functions 
 
An important concept in object-oriented design is that objects represent active 
entities that themselves know how to implement a certain function.  In the C++ 
implementation, it is desirable that different classes use the same name for a 
member function that performs a semantically similar task.  Normally this does not 
cause any conflict, because a member function is called either by other member 
functions inside the same class or with an instance of that class. 
 
Inheritance, however, slightly complicates the matter.  It is sometimes necessary to 
modify an inherited member function for the derived class.  For example, the RECT 
class may have a member function that draws a rectangle.  The implementation 
below is based on some fictional graphics primitives (low-level graphics 
functions): 
 
#include "graphics.h" 
 
... 
 
void RECT::Draw() 
 
{ 
    SetPenColor(color); 
    MovePenTo(ulCorner.GetX(), ulCorner.GetY()); 
    PenDown(); 
    MovePenRel(width, 0); 
    MovePenRel(0, height); 
    MovePenRel(–width, 0); 
    MovePenRel(0, –height); 
    PenUp(); 
} 

 
The FILLEDRECT class also needs a function that draws a filled rectangle, and the 
object-oriented approach requires that it have the same name, Draw().  This 
function may first fill the interior of the rectangle and then draw its border: 
 
void FILLEDRECT::Draw() 
 
{ 
    SetPenFillPattern(fill); 
    SetPenColor(fillcolor); 
    DrawFilledBox(ulCorner.GetX(), ulCorner.GetY(), width, height); 
 
    // Now call the Draw() function for the base class RECT 
    //  in order to draw the border: 
 
    ... 
} 
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We would like to call the Draw() function for the base class, but we need some 
special syntax for it.  If we said  simply 
 
    Draw(); 

 
it would be interpreted as a recursive call to FILLEDRECT::Draw() — a bad 
error. 
 
To distinguish the Draw() function for the base and derived classes we specify the 
class name before the function name:  
 
void FILLEDRECT::Draw() 
 
{ 
    SetPenFillPattern(fill); 
    SetPenColor(fillcolor); 
    DrawFilledBox(ulCorner.GetX(), ulCorner.GetY(), width, height); 
 
    RECT::Draw(); 
} 

 
A conflict is also possible between a member function name and a non-member 
free-standing function.  Suppose our fictional graphics primitive MovePenRel(…) 
were called MoveRel(…) instead.  That name would clash with the RECT class's 
member function MoveRel(…).  To distinguish between the two, we would have 
to precede the free-standing function's name with the global scope prefix :: 
 
void RECT::Draw() 
 
{ 
    ::SetColor(color); 
    ::MoveTo(ulCorner.GetX(), ulCorner.GetY()); 
    ::PenDown(); 
    ::MoveRel(width, 0); 
    ::MoveRel(0, height); 
    ::MoveRel(–width, 0); 
    ::MoveRel(0, –height); 
    ::PenUp(); 
} 

 
We have also used :: with PenDown() and PenUp() for consistency and to 
emphasize that they are free-standing functions. 
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28.5 Base and Derived Class Constructors 
 
A special case of function redefinition takes place with constructors.  Before 
entering its own code, the constructor for the derived class automatically executes 
the constructor for the base class.  By default, the compiler calls the base class 
constructor version that does not take any arguments.  Consider the following 
example: 
 
// GRAPHICS.H 
 
... 
 
class RECT { 
 
  protected: 
 
    POINT ulCorner; 
    int width; 
    int height; 
    COLOR color; 
 
  public: 
 
    RECT ();     // Constructor with no arguments 
    RECT (POINT ul, int w, int h, COLOR c = WHITE); 
                 // Constructor with initialization 
    ... 
}; 
 
class FILLEDRECT : public RECT { 
 
  protected: 
 
    FILL fill; 
    COLOR fillcolor; 
 
  public: 
 
    FILLEDRECT ();     // Constructor with no arguments 
    FILLEDRECT (POINT ul, int w, int h, COLOR c = WHITE, 
          FILL f = SOLID, COLOR fc = BLACK); 
                       // Constructor with initialization 
    ... 
}; 
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// GRAPHICS.CPP 
 
... 
 
RECT::RECT()                // Constructor with no arguments 
 
{ 
    ulCorner.MoveTo(0,0); 
    width = 1000; 
    height = 1000; 
    color = WHITE; 
} 
 
FILLEDRECT::FILLEDRECT()    // Constructor with no arguments 
 
{ 
    fill = SOLID; 
    fillcolor = BLACK; 
}     

 
// TEST.CPP 
 
... 
int main() 
 
{ 
    FILLEDRECT filledrect; 
    ... 
} 

 
When a FILLEDRECT object is declared without arguments, the RECT constructor 
(the form without arguments) is called first.  It sets ulCorner to (0,0), width and 
height to 1000, and color to WHITE.  Then additional statements are executed in 
the FILLEDRECT constructor: fill is set to SOLID and fillcolor is set to 
BLACK.  The call to the base class constructor is implicit and not shown anywhere 
in the code. 
 
Suppose now we want to declare a FILLEDRECT object and initialize it with some 
arguments, as follows: 
 
// TEST.CPP 
 
... 
int main() 
 
{ 
    FILLEDRECT filledrect(POINT(0,0), 200, 100, BLUE, SOLID, RED); 
    ... 
} 
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In the FILLEDRECT class definition we have declared a special constructor with 
these arguments.  However, we need to pass some of these arguments to the RECT 
constructor, which is called first.  The syntax for doing this is the same as in an 
initializer list: 
 
// Constructor for FILLEDRECT with arguments 
 
FILLEDRECT::FILLEDRECT (POINT ul, int w, int h, COLOR c, 
    FILL f, COLOR fc) : RECT(ul, w, h, c) 
 
{ 
    fill = f; 
    fillcolor = fc; 
}     

 
The statement 
 
... : RECT(ul, w, h, c) 

 
indicates that the appropriate form of the constructor for the base class should be 
called before entering the code for the FILLEDRECT constructor.  Note that the 
RECT constructor is called implicitly.  There is no syntax for an explicit call 
because there is no need to construct any additional object — the RECT object is 
simply a part of the FILLEDRECT object. 
 
The destructors are executed in reverse order: the destructor for the derived class, 
after finishing its own code, automatically calls the destructor for the base class. 
 

28.6 Assignments and Pointer Conversions 
 
Is it valid to assign a variable of a derived class to a variable of the base class and 
vice versa?  Can a pointer of the base class type point to an object of the derived 
class type and vice versa? 
 
Consider the following code: 
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// TEST.CPP 
 
#include "graphics.h" 
 
int main() { 
 
{ 
    RECT rect, *prect; 
    FILLEDRECT filledrect, *pfilledrect; 
 
    ... 
    rect = filledrect;     // Base set to derived –– OK! 
    ...                    //   (all members of rect can be copied 
                           //    from the corresponding members of 
                           //    filledrect) 
 
    filledrect = rect;     // Derived set to base –– ERROR! 
                           //   (values for additional members 
                           //    fillpattern, fillcolor are 
                           //    undefined) 
    ... 
    prect = &filledrect;   // Automatic cast –– OK: 
    prect–>MoveTo(100,100) //   all members addressed through prect 
                           //   are defined in filledrect 
    ... 
    pfilledrect = &rect;   // ERROR: 
                           //   some members defined for filledrect 
                           //    are undefined for rect 
    pfillrect–>            //  
        SetFillColor(c);   // This would assign c to a non–existing 
                           //   member in rect 
 
    ... 
} 

 
The above code demonstrates that in C++ you can assign a variable of the derived 
type to a variable of the base type.  C++ provides an automatic conversion from 
the derived type to the base type, because an object of the derived class has all the 
inherited elements of the base type, and it can assign these values to an object of 
the base type.  The converse is not true.  An attempt to assign an object of the base 
type to an object of the derived type normally generates a compiler error, because 
such assignments leave the additional members of the derived class (e.g., 
fillcolor, fillpattern) undefined.  Figure 28-1 illustrates this situation.  
(The base-to-derived assignment becomes possible if a special constructor that 
assigns some default values to all additional members is provided for the derived 
class.) 
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     Derived class:                            Base class:

       FILLEDRECT                RECT

       ulCorner                  ulCorner

       width                     width

       height                    height

       color                     color

       fill      ?

       fillcolor ?

 
Figure 28-1.   Assignment from a base class to the derived class is not allowed 

 
 
The same is true for pointers.  A base class pointer can point to an object of the 
derived class because all members accessible with the base type pointer are defined 
in the derived class. 

a a a 

The automatic cast of pointers from the derived to the base class is an important 
feature for OOP, where it is desirable to be able to handle all the objects in a 
hierarchy uniformly.  Suppose you want to create a list of several graphics objects 
to be displayed on the screen.  You cannot just put all the objects into an array or a 
linked list, because the objects, represented by various classes (e.g. RECT, 
FILLEDRECT, CIRCLE), have different data types and sizes.  A good solution is to 
derive all your graphics classes from some common abstract class, GRAPHOBJECT, 
and to keep your master list in the form of an array (or linked list) of pointers to 
GRAPHOBJECTs.  For example: 
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// GRAPHICS.H 
 
class GRAPHOBJECT { 
 
  protected: 
 
    apstring errormsg; 
    ... 
 
  public: 
 
    ... 
    void Draw(); 
    ... 
}; 
 
... 
 
class RECT : public GRAPHOBJECT { 
    ... 
}; 
 
class FILLEDRECT : public RECT { 
    ... 
}; 
 
class SQUARE : public RECT { 
    ... 
}; 
 
class CIRCLE : public GRAPHOBJECT { 
    ... 
}; 
 
... 
 

 
// TEST.CPP 
 
#include "graphics.h" 
 
int main() 
 
{ 
    GRAPHOBJECT *displayList[100]; 
 
    ... 
    displayList[0] = new RECT(POINT(0,0), 100, 100, RED); 
    displayList[1] = new FILLEDRECT(POINT(0,0), 100, 100, RED, 
                                                    HATCH, BLUE); 
    displayList[2] = new CIRCLE(POINT(50,50), 100); 
    ... 
} 
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28.7 Virtual Functions, Polymorphism 
 
The example of a display list from the previous section poses a question: how can 
we display all its elements?  The information about the specific types of objects in 
the list seems to be lost.  One possible solution would be to include the graphics 
object type descriptor within the GRAPHOBJECT class definition.  Then we could 
write one Draw() function with a big switch statement that would properly 
handle all the different types of graphics objects: 
 
enum GTYPE {GPIXEL, GRECT, GFILLEDRECT, GCIRCLE, ...}; 
 
class GRAPHOBJECT { 
 
  protected: 
 
    GTYPE gtype; 
    ... 
}; 
 
void GRAPHOBJECT::Draw() 
 
{ 
    switch (gtype) { 
    ... 
    } 
} 

 
This solution would be cumbersome and contrary to the spirit of OOP. 
 
What we would like to be able to do is write something simple: 
 
    ... 
    for (int i = 0;   i < nObjects;   i++) 
        displayList[i]–>Draw(); 
    ... 

 
Based on what we have learned so far, we would not expect this to work because 
the same Draw() function for the GRAPHOBJECT class would be called for every 
element in the list.  This function knows nothing about rectangles or circles.  But 
as we will see shortly, the addition of just one keyword, virtual, in the 
declaration of the function Draw() can make the above code work. 
 
Each type of object in the list has its own Draw() function, and the appropriate 
function should be called for that object automatically.  This feature is called 
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polymorphism (from Greek: poly — many; morphe — form).  Polymorphic 
behavior lets the same base type of pointers properly manipulate objects of 
different derived types.  It is one of the key features in C++ and other object-
oriented languages.  In C++, polymorphism has to be implemented through 
pointers, because we cannot store objects of different types in the same list, but we 
can store the pointers of the same base class type. 
 
Polymorphism requires in one way or another a run-time support feature called 
run-time operator identification.  The address of a polymorphic function cannot 
be hard-coded in the compiled code.  Instead, it has to be determined at run time.  
In the C++ run-time implementation, each class has a table of the addresses of its 
member functions and each object has a pointer to the table of its class.  This is 
structurally similar to the object type descriptor and switch statement solution, 
but all the mechanics are handled by the compiler and kept hidden from the 
programmer. 
 
C++ requires that functions that will be called in a polymorphic manner be 
declared with the keyword virtual.  For example: 
 
class GRAPHOBJECT { 
    ... 
  public: 
 
    virtual void Draw(); 
    ... 
}; 

 
This declaration assures that in the whole hierarchy of classes derived from 
GRAPHOBJECT, Draw() will be a virtual function.  If a class has its own redefined 
version of Draw(), that version will be called; otherwise, a version higher in the 
hierarchy will be called.  This will work whether the object is accessed through its 
own pointer type or the base type (or any type higher in the hierarchy).  Moreover, 
GRAPHOBJECT does not even have to specify a body for Draw().  It can declare it 
as a pure virtual function: 
 
class GRAPHOBJECT { 
    ... 
    public: 
 
    ... 
    virtual void Draw() = 0;  // Pure virtual function  
    ... 
}; 

 
A class with one or more pure virtual member functions is called an abstract class.  
It exists only to serve as a base class for deriving other classes.  Objects of abstract 
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class types do not exist: the compiler will report an error if you try to actually 
declare or create an object with the type of an abstract class.  Lower in the 
hierarchy we eventually define classes where all pure virtual functions are 
redefined into actual functions.  These classes are called concrete classes. 
 
Let us consider another example where polymorphism and virtual functions help 
us avoid duplication of code.  This time we are concerned with the implementation 
of the derived class.  Suppose we have a member function Stretch(…) in the 
RECT class which implements a “rubber box” — erases a rectangle, changes its 
size, and draws it again: 
 
// GRAPHICS.H 
 
... 
 
class RECT { 
 
  protected: 
 
    POINT ulCorner; 
    int width; 
    int height; 
    COLOR color; 
 
  public: 
 
    ... 
    void Draw (); 
    void Stretch (int dw, int dh); 
    ... 
}; 

 
There is a method of painting pixels on the screen in such a way that the new 
image is “xor'ed” (that is, added in binary arithmetic) to the screen.  Drawing the 
image the second time in the same place erases the image and leaves no trace.  This 
method can be used for drawing erasable objects.   
 
Suppose a current “erasable” object is already on the screen.  We may write a 
function that looks like this: 
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// GRAPHICS.CPP 
 
... 
 
void RECT::Stretch (int dw, int dh) 
 
{ 
    Draw();       // Erase the current rectangle 
    width += dw; 
    height += dh; 
    Draw();       // Draw the changed rectangle  
} 

 
We can use it as follows: 
 
// TEST.CPP 
 
... 
int main() 
 
{ 
    RECT rect; 
    ... 
    SetWriteMode(XOR_PUT); 
    rect.Draw(); 
    for (int k = 0;   k < 100;   k++) 
        rect.Stretch(10,10); 
    ... 
} 

 
Now we might create a derived class, FILLEDRECT, which inherits the 
Stretch(…) function.  But for some reason, the inherited function does not quite 
work.  In desperation, we implement an exact replica of Stretch(…) as a 
FILLEDRECT member function — and this time, it works!   
 
The mystery is explained by the differences in the Draw() function in the RECT 
and FILLEDRECT classes.  The inherited version of Stretch(…) fails to call the 
correct version of Draw(), redefined for the FILLEDRECT class.  An elegant 
remedy is to declare Draw() in RECT as a virtual function: 
 
class RECT { 
 
  public: 
 
    ... 
    virtual void Draw(); // Works when redefined in derived classes 
    void Stretch (int dw, int dh); 
    ... 
}; 
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Then Draw() acquires polymorphic behavior, the correct version is called in the 
inherited version of Stretch(…), and there is no need to duplicate Stretch(…) 
in the FILLEDRECT class. 
 
Polymorphism is a way to relax the strong type checking in C++ to support the 
OOP approach.  It is a very powerful method for properly designed class 
hierarchies.  Note that in case of ambiguities, you can precisely specify which 
version of the function you are referring to anywhere in your code by using its 
name with the class scope prefix.  For example: 
 
void FILLEDRECT::DrawBorder() 
 
{ 
    RECT::Draw(); 
} 

 

28.8 Inheritance and Sound Software Design 
 
As we explained earlier, inheritance helps bring some order to a multitude of 
classes by arranging them into neat hierarchies.  As always, though, there is the 
danger of the generalizer’s overkill: a programmer may enjoy creating an elaborate 
hierarchy of abstract and concrete classes only to achieve some modest 
functionality at the bottom.  The general applicability of these classes may exist 
only in the mind of the creator. 
 
Another danger is trying to take the ideal of clear semantic relations between 
classes too far.  Often specialization among classes should be achieved by 
imposing constraints on their members, not by adding new members.  For 
example, a square is “a kind of” rectangle whose width is equal to its height.  What 
do we do with the width and height elements if we derive a class SQUARE from 
the class RECT?  It seems more feasible to do the reverse derivation by adding the 
height element to the SQUARE class.  These situations must be handled carefully 
on a case-by-case basis. 
 
From a more practical point of view, inheritance offers a simple way of reusing 
existing classes by adding a few members and redefining some member functions.  
However, you should make sure that most of the members in the base class are 
useful for your derived class — otherwise, the inheritance may be unnecessary.  
Also always consider embedding as an alternative.  It is sometimes quite difficult 
to decide between these two methods. 
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Another common use of inheritance is inheriting just the interface of a class.  This 
can be convenient when different classes share the same set of public function 
names and their arguments, but like anything else, it can be taken too far.  The 
apstack and apqueue classes, for example, both have functions for inserting and 
removing elements and checking for the empty condition.  A programmer may be 
tempted to derive their interfaces from some abstract class SET, ignoring the fact 
that there are already conventional names for the stack functions, “push” and 
“pop,” and conventional names for the queue functions, “enqueue” and “dequeue.” 
 
Finally, inheritance is a convenient vehicle for commercial delivery of reusable 
software components to developers.  Software components are delivered in the 
form of class libraries, and developers, in addition to using the supplied classes 
directly, can derive their own classes from them. 
 

28.9 Summary 
 
Inheritance is a concept in object-oriented programming languages that supports 
taxonomic hierarchies of objects.  In C++, inheritance is implemented through the 
capability of defining a new class which contains all the members of the base class.  
The new class is called a derived class.  In the most common form of inheritance, 
public inheritance, public and protected members of the base class keep their status 
in the derived class and are accessible to the derived class member functions.  
Some member functions can be redefined in the derived class. 
 
Inheritance is also a convenient tool for reusing classes by adding or modifying a 
few members, and for reusing a class's interface. 
 
C++ allows a pointer of the base class type to point to any of the derived class 
objects.  A program can call the member function appropriate to an object’s class 
regardless of the type of pointer through which the object is accessed.  This feature 
is known as polymorphism.  Functions with polymorphic capability are declared 
with the keyword virtual and are called virtual functions. 
 
Inheritance allows programmers to define elaborate hierarchies of classes with 
great ease.  It should be used with care, though, to avoid unnecessarily complicated 
designs. 
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                    Appendix A:  Bit-Wise Logical Operators 
 
 
Besides representing a number or a character, a memory location can be used for 
various purposes simply as a set of bits.  For example, individual bits in a byte can 
represent “flags” that identify the properties or current state of an object or 
program.  Combinations of bits may represent “fields” packed into one int or 
long memory location.  Individual bits may also represent pixels in an image, and 
bit patterns may be used in low-level routines for programming hardware registers. 
 
Variables used as sets of bits can be declared as unsigned integral types.  It makes 
sense to distinguish these variables from numeric and character variables by 
introducing special data type names for them.  The following data type names have 
become rather common: 
 
typedef unsigned char BYTE; 
typedef unsigned short WORD; 
typedef unsigned long DWORD;  // "double word" 

 
A BYTE variable has eight bits.  To make our discussion more concrete, let's 
assume that a WORD has two bytes (16 bits) and a DWORD, four bytes (32 bits).  The 
individual bits are often referred to by their positions in a byte or a word, starting 
from 0 at the rightmost, least significant bit.  For example, bits in a byte would be 
numbered from 0 through 7 (Figure A-1). 
 
 

Bit 7 6 5 4 3 2 1 0

       01001101
 

 
Figure A-1.   The usual numbering of bits in a byte. 
 



532 C++ FOR YOU++ 

The easiest way to initialize variables that represent bit patterns in C++ is by using 
hexadecimal numbers.  Recall that each hex digit corresponds to four bits, as 
follows: 
 

 Binary         Hex 
 
  0000           0 
  0001           1 
  0010           2 
  0011           3 
  0100           4 
  0101           5 
  0110           6 
  0111           7 
  1000           8 
  1001           9 
  1010           A 
  1011           B 
  1100           C 
  1101           D 
  1110           E 
  1111           F 

 
C++ allows you to write a hex constant as a sequence of hex digits preceded by 0x.  
For example: 
 
WORD flags = 0x8020;                 // 1000 0000 0010 0000 
WORD mask = 0xFFC0;                  // 1111 1111 1100 0000 
BYTE data_ready_bit 0x20;            // 0010 0000 

 
A byte can be defined by two hex digits, a word by four hex digits, and a double 
word by eight hex digits. 
 
It is useful to remember hex equivalents for the following bit patterns: 
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   Binary                  Hex 
 
  00000000                 0x00 (or simply 0) 
 
  00000001                 0x01 
  00000010                 0x02 
  00000100                 0x04 
  00001000                 0x08 
  00010000                 0x10 
  00100000                 0x20 
  01000000                 0x40 
  10000000                 0x80 
 
  11111111                 0xFF 
  11110000                 0xF0 
  00001111                 0x0F 
 
  0000000000000001         0x0001 
  ... 
  1000000000000000         0x8000 
  1111111100000000         0xFF00 
  0000000011111111         0x00FF 
  1111111111111111         0xFFFF 

a a a 

C++ offers four bit-wise logical operators: the binary operators “and,” “or,” and 
“xor,” and a unary operator “not.”  These operators take operands of integral types, 
but the values of individual bits in the result are determined by the values of 
corresponding bits (bits in the same positions) in the operands. 
 
The “and” operator is denoted by the symbol '&'.  In the & operation the 
resulting bit is 1 if and only if both corresponding bits in the two 
operands are 1. 

 
For example: 
 
    00010100 11100010 
  & 11111111 00000000 
    ––––––––––––––––– 
    00010100 00000000 
 
Or, in hex representation: 
 
    0x14E2 & 0xFF00 = 0x1400 
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The “or” operator is denoted by the symbol '|'.  In the | operation the 
resulting bit is 1 if and only if at least one of the corresponding bits in the 
two operands is 1. 
 
For example: 
 
    00010100 00010001 
  | 00000000 00111111 
    ––––––––––––––––– 
    00010100 00111111 
 
Or, in hex representation: 
 
    0x1411 | 0x003F = 0x143F 
 
The “xor” operator is denoted by the symbol '^'.  In the ^ operation the 
resulting bit is 1 if and only if exactly one of the corresponding bits in the 
two operands is 1. 

 
For example: 
 
    0x14F1 ^ 0x00FF = 0x140E 
 
In other words, in the “xor” operator the resulting bit is set to 1 when the 
corresponding bits in the operands are different.  “Xor” stands for “exclusive or.” 
 
The “not” operator is a unary operator.  It is denoted by '~'.  In the ~ 
operation the resulting bit is set to 1 if the corresponding bit in the 
operand is 0 and to 0 if the corresponding bit in the operand is 1. 

 
For example: 
 
    ~0x0F01 = 0xF0FE 

a a a 

&, | and ^ have lower precedence than relational operators, including the 
== and != operators. 
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For example, 
 
    ... (x & 0x0001 != 0) 

 
is interpreted as: 
 
    ... (x & (0x0001 != 0)) 

 
as opposed to the possibly intended: 
 
    ... ((x & 0x0001) != 0) 

 
This is a potential source of nasty bugs.  It is always safer to use parentheses 
around binary bitwise operators. 
 
The &, |, and ^ operators can be used in compound assignments.  For example: 
 
    WORD flags = 0x0020; 
 
    flags |= 0x8000;          //  Same as: flags = flags | 0x8000; 
    flags &= 0x00C0;          //  Same as: flags = flags & 0x00C0; 

a a a 

The & operator can be used to test or reset a bit in a byte or word.  For example: 
 
    BYTE flags = 0; 
    const BYTE data_ready_bit = 0x20; 
 
    ... 
    if (flags & data_ready_bit) // Test the "data ready" bit 
        ... 
    ... 
    flags &= ~data_ready_bit;   // Reset the "data ready" bit (to 0) 

 
& can be also used to “cut out” a field from a byte or word: 
 
    DWORD a = 0x802A0013; 
 
    lowbyte = a & 0x000000FF; 

 
The | operator can be used to set a bit in a byte or word.  For example: 
 
    flags |= data_ready_bit;    // Set "data ready" bit to 1 
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The ^= operator is handy when you need to toggle a bit or a value.  The following 
function calculates the alternating sum of numbers in an array and uses ^= to 
toggle the sign flag: 
 
double AlternatingSum(const apvector<double> &x) 
 
// Returns x[0] – x[1] + x[2] – x[3] + ... – (or +) x[n–1]. 
 
{ 
    int i, len = x.length(); 
    double sum = 0.; 
    BYTE sign = 0; 
 
    for (int i = 0;   i < len;   i++) { 
        if (sign == 0) 
            sum += x[i]; 
        else 
            sum –= x[i]; 
        sign ^= 1;           // Toggle sign 
    } 
    return sum; 
} 

a a a 

C++ also offers left and right shift operators.  They use the same symbols, << and 
>>, as the stream insertion and extraction operators.  (In fact, the stream insertion 
and extraction operators are overloaded shift operators.)  The format is illustrated 
below: 
 
    WORD a, b, x, y; 
 
    ... 
    x = a << 8;          // x = value in a, shifted left by 8 bits 
    y = b >> k;          // y = value in b, shifted right by k bits 

 
Bits shifted out of the range are lost, and the new bits shifted into the range are set 
to 0.  For example: 
 
    0xFF11 << 1 = 0xFE22; 
 
The shift operators can be used in compound assignments.  The following function 
counts the number of set bits in a word and uses the >>= operator to shift the tested 
word: 
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int BitsInWord (WORD w) 
 
// Returns the number of set bits in w. 
 
{ 
    int count = 0; 
 
    while (w) { 
        if (w & 0x0001) count++; 
        w >>= 1; 
    } 
 
    return count; 
} 

 
In the following example, an array of words represents pixels in one horizontal 
scan line in an image: 1 stands for black and 0 for white.  The HorizBorders(…) 
function efficiently whites out all black pixels that are not on the border, that is, the 
ones with both a left and a right neighbor. 
 
void HorizBorders(const apvector<WORD> &pix, apvector<WORD> &pix1) 
 
// Eliminates inner pixels (that have both a left and a right 
//   neighbor) in a horizontal scan line, represented by bits in 
//   the pix array.  Places the result in pix1. 
 
{ 
    WORD lword, rword; 
    int i, n = pix.length(); 
 
    for (i = 0;   i < n;   i++) { 
        lword = pix[i] >> 1;          // Left neighbors; 
        if (i > 0)                    //   fix the leftmost bit 
            lword |= pix[i–1] << 15;  //   from the previous word 
        rword = pix[i] << 1;          // Right neighbors; 
        if (i < n–1)                  //   fix the rightmost bit 
            rword |= pix[i+1] << 15;  //   from the next word 
        pix1[i] = pix[i] & ~(lword & rword); 
    } 
} 

 
Bitwise operators and shifts are very economical — they are usually compiled into 
one CPU instruction. 
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                               Appendix B:  Pointers and Arrays 
 
 
There is a close relationship between arrays and pointers in C++.  Suppose we 
have declared an array of 100 elements of the data type double: 
 
    double a[100]; 

 
The elements of the array can be referred to in the program as a[0] ... a[99].  
When the program is compiled, the compiler does not save the addresses of all the 
elements, but only the address of the first element, a[0].  When the program needs 
to access any element, a[i], it calculates its address by adding i units to the 
address of a[0].  The number of bytes in each “unit” is, in our example, equal to 
the sizeof(double) (e.g., 8).  In general, it is equal to the number of bytes 
required to store an element of the array. 
 
The address of a[0] can be explicitly obtained using the & (“address of”) operator: 
&a[0].  Since the data type of a[0] is double, the data type of &a[0]is, as usual, 
double* (pointer to double). 
 
C++ allows us to use the name of the array a, without any subscript, as 
another name for &a[0]. 

 
The name a can be used as an rvalue of the type double*.  It cannot be used as an 
lvalue, because it cannot be changed.  We can assign this value to any double* 
variable.  For example: 
 
    double a[100]; 
    double *p; 
 
    p = a;  // Same as p = &a[0]; 
    ... 
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As long as p points to the first element of the array, *p becomes an alias for a[0].  
In general, we can assign 
 
    p = &a[i]; 

 
Then *p becomes temporarily an alias for a[i]. 

a a a 

C++ supports  arithmetic operations on pointers that mimic calculations 
of addresses of array elements.  In this pointer arithmetic, we can add an 
integer to a pointer or subtract an integer from a pointer.  For 
convenience, the integer operand signifies “units” corresponding to the 
pointer’s data type, not bytes. 

 
For example, if we have 
 
    double a[100]; 
    double *p; 
 
    p = &a[0]; 

 
then p+1 points to a[1],  p+2 points to a[2], and so on.  The actual difference in 
bytes between p+1 and p is sizeof(double) (e.g., 8). 
 
If p is equal to a, then we can refer to a[1] as *(p+1) and, in general, to a[i] as 
*(p+i).  
 
We can also increment and decrement a pointer using the ++ and –– 
operators. 

 
In the expression *p++, the increment operator applies to the pointer, and not to 
the value to which it points.  It means: take the value *p, then increment p, (not the 
dereferenced value *p). 
 

  The statement: Is the same as: 
 
  x = *p++; 
 

 
  {  x = *p; 
     p++;     } 
 

 
The relational operators <, >, <=,  and >=  can be applied to pointers that point to 
elements of the same array.  For example: 
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    ... 
    char s[20], *p1, *p2; 
 
    p1 = &s[0]; 
    p2 = &s[19]; 
    while (p1 < p2) { 
        ... 
        p1++; 
    } 

 
All of the above allows us to scan through an array using a pointer variable rather 
than subscripts.  Instead of 
 
    for (i = 0;   i < 100;   i++) 
        cout << a[i] << ' '; 

 
we can write: 
 
    p = a; 
    for (i = 0;   i < 100;   i++) { 
        cout << *p << ' '; 
        p++; 
    } 

 
Or, even more economically, utilizing all the shortcuts that C++ provides: 
 
    for (p = a, i = 0;   i < 100;   i++) 
        cout << *p++ << ' '; 

 
You may encounter this idiom in the code that deals with null-terminated strings: 
 
    char str[60], *s = str; 
    ... 
    // Find the first '@': 
    while (*s && *s != '@') s++; 

a a a 

This relationship between arrays and pointers is reciprocal.  Any pointer may be 
construed as pointing to the first element of some logical array, albeit undeclared.  
If p is a pointer, C++ allows us to write p[0] instead of *p, and in general, p[i] 
instead of *(p+i). 
 
Consider the following example of a function that shifts the elements of an array to 
the left by 3 (starting at a[3]): 
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void ShiftLeftBy3(double a[], int size) 
 
// Shifts elements: 
//   a[0] = a[3]; 
//   a[1] = a[4]; 
//    ... 
//   a[size–4] = a[size–1]; 
 
{ 
    double *p = a + 3; 
 
    for (int i = 0;   i < size–3;   i++) 
        a[i] = p[i]; 
} 

 
In view of the reciprocity between pointers and arrays, we have to 
conclude that the most appropriate way of looking at the expression p[i] 
is to think of [] as the “subscript” operator: we are applying the 
operator [] to the operands p (of a particular pointer data type) and i 
(an integer). 

 
We have to be a little careful, though.  When we declare a pointer p, this by itself 
does not declare any array.  Before we start using p[i], we have to make sure that 
p points to some element in an array declared elsewhere, and that p[i] is within 
the range of that array. 
 
In a nutshell, whether s is declared as an array or as a pointer, the following 
expressions are equivalent: 
 

Expression: Is the same as: 
 
  s 

 
  &s[0] 

 
 s + i 

 
  &s[i] 

 
  *s 

 
  s[0] 

 
 *(s+i) 

 
  s[i] 

 
If a is declared as an array, enough memory is reserved to hold the specified 
number of elements, and a cannot be used as an lvalue (i.e., you cannot set a equal 
to a new address).  If p is declared as a pointer, the declaration by itself does not 
reserve any memory to which p points; p can be used as an lvalue, and, in fact, 
before p is used as a pointer, it must be set to some valid address (the address of 
some variable or constant, or an array element).   
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a a a 

The difference between an array and a pointer disappears completely within a 
function to which an array is passed as an argument.  An array argument, a, is 
passed to a function as a pointer equal to the address of the first element of the 
array.  The function declarations 
 
... MyFunction (double a[], ...) 

 
and  
 
... MyFunction (double *a, ...) 

 
are identical.  The former simply emphasizes the fact that a points to the whole 
array, not just one variable. 
 
Within the function, this array (or pointer) argument is a copy of the pointer passed 
from the calling code.  That is why this pointer can be used as both an lvalue and 
an rvalue.  For example, the following function copies one array into another: 
 
void Copy (double a[], double b[], int size) 
 
// Copies a[0] into b[0], ..., a[size–1] into b[size–1] 
 
{ 
    for (int i = 0;   i < size;   i++) 
        b[i] = a[i]; 
} 

 
The same function can be written with pointers: 
 
void Copy (double a[], double b[], int size) 
 
// More obscure implementation with pointers: 
 
{ 
    while (size–– > 0)  // Compare size with 0, then decrement it 
        *b++ = *a++; 
} 

 
But there is no legitimate reason for using the latter version, and it may even seem 
obscure to some programmers. 
 
In another example, consider the function AddElements(…), which returns the 
sum of an array’s elements: 
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double AddElements (double a[], int size) 
 
// Returns a[0] + ... + a[size–1] 
 
{ 
    double sum = 0.; 
    int i; 
 
    for (i = 0;   i < size;   i++) 
        sum += a[i]; 
 
    return sum; 
} 

 
Now, suppose we have an array of 100 elements: 
 
   ... 
   double a[100]; 
   ... 

 
We can call AddElements(…) to calculate, for instance, the sum of the first 80 
and the sum of the last 20 elements of this array, as follows: 
 
    ... 
    double sum1, sum2; 
    ... 
    sum1 = AddElements(a, 80);      // sum1 = a[0] + ... + a[79] 
    sum2 = AddElements(a + 80, 20); // sum2 = a[80] + ... + a[99] 
    // or, equally acceptable, 
    // sum2 = AddElements(&a[80], 20); 
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                                 Appendix C:  Stream I/O Classes 
 
 
C++ stream I/O classes allow programs to handle files and input and output 
devices consistently.  The classes are arranged into a hierarchy, with the base ios 
class at the root (Figure C-1).  ios defines input or output stream abstraction and 
includes functions and constants that report and define the stream state. 
 
 

                                            ios

                      istream                                 ostream

  istrstream   istream_withassign   ifstream   ofstream   ostream_withassign   ostrstream

 
Figure C-1.   C++ I/O classes hierarchy. 
 
 
The public constants in the ios class are written with the ios:: prefix.  For 
example, in the following line: 
 
    cout.flags (ios::showpoint | ios::fixed); 

 
long flags(…) is a member function of the ios class ( inherited by cout) 
which sets the formatting attributes of the stream (represented as “flags,” i.e., bits 
in a special data member that holds the formatting information). 
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ios::showpoint is a flag that tells the stream always to show the decimal point 
in the output of float and double types; ios::fixed tells the stream to show 
the fixed number of decimal places defined by the current precision setting, 
including the trailing zeroes.  These two constants represent individual bits in the 
stream format variable and are combined by using the bit-wise “or” operator to set 
both flags.  flags(…) returns the old values of flags and can be called without an 
argument just to read the current flag settings.  For example: 
 
    cout << hex << cout.flags() << endl; 

 
You can find a complete list of formatting flags in the compiler documentation or 
in the iostream.h file. 

a a a 

ios also provides output formatting through the use of manipulators, which are 
specialized functions usually used by “inserting” them into the stream.  The most 
commonly used ones are: 
 
    endl              — inserts end of the line 
    setw(d)           — sets output width to d 
    setprecision(d)   — sets decimal precision 
    dec               — switches to decimal output 
    hex               — switches to hex output 
    setfill(ch)       — defines a new fill character 
                          (for padding between fields) 
    ends              — inserts the null character '\0' 
                          (used in output to strings) 

 
To use manipulators with a parameter, setw(…), setprecision(…), 
setfill(…), you need to include the iomanip.h header file into your source.  
setprecision, setfill, dec, and hex settings remain in effect until changed, 
but setw is reset to the default after the first output item. 
 
For example: 
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#include <iostream.h> 
#include <iomanip.h> 
 
int main() 
 
{ 
    double amt = 1.5; 
    cout.flags(ios::showpoint | ios::fixed); 
    cout << setprecision(2) << setfill('*'); 
    cout << "Amount " << setw(10) << amt << endl; 
    cout << setw(10) << "Amount " << amt << endl; 
    ... 
} 

 
would produce: 
 
Amount ******1.50 
***Amount 1.50 

 
The ios setf(…) member function allows you to set a few format bits selectively 
while leaving other bits unchanged.  For example, 
 
    cout.setf(ios::left, ios::adjustfield); 

 
tells the output stream to left-justify all output items within their width fields.  If 
followed by 
 
    cout << setfill('.') << setw(20) << "Preface" << 1 << endl; 

 
 it will produce 
 
Preface.............1 

 
Some compilers may not right-justify the value in the output field by default.  Then 
you need to add the statement 
 
    cout.setf(ios::right, ios::adjustfield); 

 
to your program. 
 
The ios unsetf(…) member function resets selectively the specified format bits 
while leaving other bits unchanged. 

a a a 
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The ios class also provides functions for conditions and error checking: 
 
    int eof()  – returns true on the end–of–file condition 
    int bad()  – returns true if an invalid operation was attempted  
    int fail() – returns true if the operation failed or was invalid 
    int good() – returns true if none of the above 

 
The overloaded ! (“not”) operator is simply a convenient shorthand for fail().  
For example: 
 
    ifstream file("myfile"); 
    if (!file) {     // The same as:     if (file.fail()) 
        cout << "Cannot open myfile" << endl; 
        ... 

a a a 

The file I/O classes ifstream and ofstream are derived from istream and 
ostream respectively and are defined in the fstream.h header file.  In most 
compilers fstream.h also includes iostream.h.  Each of these classes provides 
a default constructor as well as a constructor that takes a file name and an opening 
mode as arguments.  The destructor closes the file.  You can also use the open(…) 
member function to open a file explicitly and the close() function to close it 
explicitly. 
 
class ifstream: public istream { 
 
public: 
 
    ifstream(); 
    ifstream(const char *filename, int mode = ios::in, 
                                int prot = filebuf::openprot); 
    void open(const char *filename, int mode = ios::in, 
                                    int prot = filebuf::openprot); 
        //   modes: 
        // ios::in –– default 
        // ios::binary –– binary mode (the default is text mode) 
 
    void close(); 
    ... 
}; 
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class ofstream: public ostream { 
 
public: 
 
    ofstream(); 
    ofstream(const char *filename, int mode = ios::out, 
                                     int prot = filebuf::openprot); 
    void open(const char *filename, int mode = ios::out, 
                                    int prot = filebuf::openprot); 
        // modes: 
        // ios::out  –– default (truncate the file if it exists) 
        // ios::app  –– always write at the end 
        // ios::ate  –– start writing at the end 
        // ios::nocreate –– fail if the file does not exist 
        // ios::noreplace –– fail if the file already exists 
        // ios::binary –– write in binary mode (i.e., with no 
        //    formatting of any kind); the default is text mode 
 
    void close(); 
    ... 
}; 
 

In most situations you can simply use constructors to open files:  
 
#include <fstream.h> 
... 
    // Declare and open myInp 
    ifstream myFile("INPUT.DAT", ios::binary); 
    if (!myFile)... 
 
    // Declare and open myOutp 
    ofstream myOutp = ofstream("OUTPUT.DAT", ios::binary | ios::app); 
    if (!myOutp)... 
 

a a a 

Input streams (cin and files) provide the following member functions for input: 
 
    istream& operator>>(...) –  Extraction operator >> 
 
    int get()                –  Reads and returns one character 
 
    int peek()               –  Returns the next character but leaves 
                                  it in the stream 
    istream& get(char &c)    –  Reads a char into c     
 
    istream& get(char *s, int n, char delim = '\n') 
                             –  Reads up to n–1 chars or until encounters 
                                  the delim char and places them into s; 
                                  appends a null char, leaves the delim 
                                  char in the stream 
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    istream& getline(char *s, int n, char delim = '\n') 
                             –  Same as above, but extracts the delim 
                                  char from the stream 
 
    istream& ignore(int n = 1, int delim = EOF) 
                             –  Reads and discards up to n characters, 
                                  or up to and including the delim char 
 
    istream& read(char *s, int n) 
                             –  Reads n chars into s (including 
                                  null chars). May read less than n chars 
                                  in case of eof or an error 
 
    int gcount()             –  Returns the number of chars actually read 
                                  in the last call to get(…), getline(…), 
                                  or read(…) 

 
Extraction operator calls may use other read functions, so the result of gcount() 
becomes unpredictable after you use >>. 
 
There are also versions of get(…), getline(…), and read(…) that put the result 
into an array of bytes (unsigned char*). 
 
The input file streams also offer positioning functions: 
 
    long tellg()             – Tells the current position in the file 
 
    istream& seekg(long pos) – Moves to the new absolute position 
 
    istream& seekg(long offset, ios::seek_dir dir) 
                             – Moves to a position relative to the 
                                 beginning (dir = ios::beg),  
                                 current position (dir = ios::cur), or 
                                 the end (dir = ios::end) of the file 

 
The following code, for instance, reports the file size and then “rewinds” the file to 
the beginning: 
 
#include <fstream.h> 
... 
    ifstream inpFile("MYFILE.DAT"); 
    inpFile.seekg(0, ios::end);   // Set file position to the end of file 
    cout << inpFile.tellg() << " bytes.\n"; 
    inpFile.seekg(0);                 // Rewind 
 

a a a 
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Output streams (cout and files) provide the following member functions for 
output: 
 
    ostream& operator<<(...) – Insertion operator << 
 
    ostream& put(char c)     – Writes one char 
    ostream& write(char *s, int n) 
                             – Writes n chars (including null chars) 
                                 to the output stream 

 
The write(…) function is more useful for writing unformatted data into binary 
files.  In the text mode it may append carriage return characters at the end of lines. 
 
The ostream class also provides positioning functions similar to those for the 
input streams: 
 
    long tellp() 
    ostream& seekp(long pos) 
    ostream& seekp(long offset, ios::seek_dir dir) 

a a a 

cout is actually an instance of the classes ostream_withassign.  This class 
includes an overloaded assignment operator, so you can assign an output file 
stream to cout and thus redirect all the standard output to a file: 
 
    ... 
    ofstream file("TEMP.OUT"); 
    cout = file;    // All standard output will now go to TEMP.OUT 
    ... 

 
The same applies to cin, which is an instance of istream_withassign. 
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% (modulo division) operator, 80 
& (address of) operator, 181 
&&, || and ! logical operators, 104 
& bit-wise “and” operator, 533 
:: scope resolution symbol, 267 
<, >, <=, >=, ==, != relational operators, 

103 
<<, >> bit-wise shift operators, 536 
\" escape character (double quote), 58 
\' escape character (single quote), 58 
\\ escape character (backslash), 58 
[ ] (subscript) operator, 542 
^ bit-wise “xor” operator, 534 
| bit-wise “or” operator, 534 
~ bit-wise “not” operator, 534 
 
 
\a escape character (alert or bell), 58 
A/D (analog-to-digital) converters, 9 
abstract classes, 526 
Abstract Data Type (ADT), 290, 310 
accessors, 263 
address of operator &, 181 
ADT (Abstract Data Type), 290, 310 
algorithms, 122, 158, 169, 462 
analog computers, 5 
analog-to-digital converters, 9 
“and” bit-wise operator &, 533 
apmatrix class, 94 

numrows() and numcols(), 94 
resize(…) function, 94 

apmatrix.h header file, 94 

application programs, 18 
apstack class, 318 
apstring class, 201, 211 

<< and >> operators, 214 
assignment operator, 211 
c_str() member function, 214 
concatenation, 211 
find(…) member function, 213 
getline(…) function, 214 
length() member function, 212 
projects, 211 
relational operators, 211 
subscript checking, 212 
substr(…) member function, 214 

apstring.h header file, 211 
apvector class, 87 

assignment operator, 90 
length() function, 90 
passing to functions, 91 
resize(…) function, 91 
vs. built-in arrays, 88 

apvector.h header file, 89 
argc, 217 
arguments 

passing by reference, 186, 190, 197 
passing by value, 188 

argv, 217 
arithmetic operations on pointers, 540 
array processors, 5 
array representation of trees, 449 
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arrays, 86, 97 
and iterations, 132 
and pointers, 539 
deleting elements, 153 
index range, 87 
indices, 86 
initialization, 86 
initialization of two-dimensional, 93 
inserting elements, 153 
of structures, 229 
passing to functions, 543 
size, 86 
sorted, 153 
subscripts, 86 
two-dimensional, 93 

ASCII code, 15 
ASCII file, 15 
ASCII table, 16 
assembly language, 18 
assignment operator, 51 
asymptotic behavior, 464, 467 
atof(…), 205 
atoi(…), 205 
atol(…), 205 
 
 
bad() stream I/O function, 548 
base class, 510 
benchmarks, 463 
big-O notation, 468 
binary file, 15 
binary numbers, 11, 12 
binary search, 153, 159, 162, 477 
binary search trees, 404 
binary trees, 404 

complete, 449 
full, 449 

BIOS, 8 
bit, 7 
bit-wise logical operators, 533 
body of the loop, 122 
Boolean Algebra, 101 
Boolean data type, 30 
Boolean expressions, 108 
break, 128, 142 

in loops, 128 
in nested loops and switches, 155 
in switch statements, 145, 154 

BST, 404 
bubble sort, 494 
buffering, 346 
built-in arrays vs. apvector class, 88 
built-in data types, 55, 72 
bus, 7 
byte, 7 
BYTE name for unsigned char, 57 
 
 
Calculator program, 146 
call instruction, 324 
callback functions, 421 
canonical features of a class, 376 
cast operator, 76 
CD-ROM, 8 
central processing unit (CPU), 4 
chaining (in hashing), 484 
Change of Base Theorem, 470 
char data type, 55 
cin, 45 
cin.get(…), 209 
cin.getline(…), 207 
cin.ignore(…), 150, 210 
class 

abstract, 526 
accessors, 263 
base, 510 
canonical features, 376 
choosing member names, 268 
concrete, 527 
constant member functions, 265 
constructors and destructors, 270 
defined, 260 
derived, 510 
header file, 266 
members, 261 
overloading member functions, 268 
private and public members, 261 
protected members, 514 
source file, 266 
static member functions, 390 
static members, 390 
templated, 281, 282 

class interface, 201 
class libraries, 34, 35 
close(…) stream member function, 
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COBOL, 18 
collisions in a hash table, 483 
command line arguments, 217 
commenting out, 29, 47 
comments, 28 
compiler, 19 
complete binary tree, 449 
compound assignment operators, 77 
compound statements, 44, 102 
computational complexity, 463 
concatenation of strings, 211 
concrete classes, 527 
conditional branching, 100 
conditional compilation, 36 
conditional jumps, 101 
const keyword, 59, 190, 265 
constant member functions, 265 
constant strings as pointers, 202 
constants 

data types, 60 
declarations, 59, 72 
scope, 60 

constructors, 270 
as casts, 381 
overloaded, 272 
with arguments, 273 
with default arguments, 274 

continue, 128, 142 
in while loops, 131, 142 

conversion of data types with cast 
operator, 76 

copy constructor, 377 
coreleft() function, 302 
cout, 45 
cout.flags(…), 545 
CPU, 4, 6 

clock, 7 
cycles, 7 
instructions, 6, 10 
registers, 6 

c_str() apstring member function, 
214 

ctype.h, 150 
 
 
D/A (digital-to-analog) converters, 9 

dangling else, 119 
data bus, 7 
data file, 25 
data structure, 290 
data types, 51, 55 

built-in, 55, 72 
conversion, 76 
in expressions, 74 
promotion in expressions, 75 
user-defined, 71, 224 

data-driven computer architecture, 6 
debugger, 19, 169 
dec I/O manipulator, 546 
declarations of constants, 72 
declarations of variables, 54, 72 
decrement operators, 78 
default arguments, 274 
default constructor, 377 
default in switch statements, 154 
default private members in a class, 262 
#define, 35 
delete operator, 193, 198 
deleting elements from arrays, 153 
De Morgan's laws, 105 
derived class, 510 
destructor, 270 
device drivers, 10 
digital computers, 5 
digital-to-analog converters, 9 
double data type, 55 
doubly linked list, 308, 311 
do-while loops, 127, 142 
dynamic memory allocation, 192, 193 
 
 
EBCDIC code, 15 
#else, 36 
else clause, 102 
e-mail program, 357 
encapsulation, 262, 277 
#endif, 36 
endl I/O manipulator, 206, 546 
ends I/O manipulator, 219, 546 
ENIAC, 5 
enum, 70 
enumerated data types, 70 
eof() stream I/O function, 548 
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escape characters, 58 
in literal strings, 201 

Euclid's Algorithm, 158, 159, 165 
evaluation of an expression, 437 
event-driven application, 356 
exclusive or, 534 
executable program, 19, 246 
exponent part in floating-point 

representation, 14 
exponential growth, 471 
expression tree, 436 
expressions, 50 
extern keyword, 254 
external symbols, 253 
 
 
\f escape character (form feed), 58 
factorial, 126, 334 
fail() stream I/O function, 548 
false and true values, 30, 102, 119 
Fibonacci Numbers, 127, 335 
FIFO, 291 
file directory, 18 
file system, 17 
files 

creating, 47 
opening, 46 
reading, 46, 134 

find(…) apstring member function, 
213 

firmware, 17 
first-in-first-out, 291 
fixed formatting flag, 64, 546 
float data type, 55 
float.h, 57, 72 
floppy disk, 8 
flowcharts, 158 
for loops, 125, 142 

nested, 137 
FORTRAN, 18 
frames on stack, 324 
free store, 88, 192, 197 
friend functions and classes, 383 
fstream.h header file, 35, 548 
full binary tree, 449 
function overloading, 235 
function prototypes, 31, 48 

function signature, 253 
functions 

arguments, 30 
as procedural abstractions, 32 
body, 32 
calling, 30, 31 
declarations, 31 
default arguments, 274 
definitions, 48 
overview, 29 
prototypes, 31 
return value, 30 
void, 31 

 
 
Game of Life, 138 
GB (gigabyte), 8 
gcount() istream member function, 

550 
get(…) member function, 209, 549 
getline(…) function for the 

apstring class, 214, 221 
getline(…) member function, 207, 

221, 550 
gigabyte, 8 
global symbols, 253 
global variables, 66, 255 
global vs. local variables, 67 
good() stream I/O function, 548 
goto statement, 132 
Grades program, 134 
graphical user interface, 18, 20 
GREP, 216 
GUI (graphical user interface), 18, 20 
 
 
hard disk, 8 
hardware interface, 10 
hardware interrupt, 326 
hardware stack frames, 324 
hash function, 483 
hash table, 483 
hashing, 476, 483 
header files, 35, 48, 226, 246, 257, 266 

duplicate inclusions, 252 
user vs. system, 226 
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heap, 448, 450, 504 
Insert(…) function, 453 
inverted, 451 
Remove(…) function, 454 

heapsort, 504 
hex constants, 532 
hex digits, 12 
hex I/O manipulator, 546 
hexadecimal system, 12 
high-level programming languages, 18 
 
 
I/O manipulators, 64 
IDE (integrated development 

environment), 20 
IEEE standard 

floating-point representation, 14 
#ifdef, 36 
if-else statements, 100, 102 

nested, 117 
if-else if sequences, 116, 144 
#ifndef, 36 
ignore(…) member function, 210, 550 
#include, 35, 48, 226 
#include directive, 246 
include files (See: header files) 
increment and decrement operators, 78 
indentation, 44 
index registers, 10 
index to a file, 477 
infix notation, 440 
inheritance, 510 

and software reuse, 529 
private, 514 
protected, 514 
public, 514 

initialization of class-type variables, 273 
initializer list, 364, 365 
inline functions, 256 
inorder traversal, 418 
input and output devices, 9, 10 
input and output statements, 45 
input and output streams, 45 
int data type, 55 
integer division, 75 
integral data types, 55 

integrated development environment 
(IDE), 20 

insertion sort, 492 
interpolation search, 479 
interrupt handling, 326 
Inventory program, 148 
inverted heaps, 451 
iomanip.h, 64, 546 
ios class, 545 
iostream.h, 45 
“is equal” operator ==, 103 
isalnum(c), 216 
isalpha(c), 216 
isdigit(c), 216 
IsPrime(…) function, 129 
istream_withassign class, 551 
istrstream, reading from a char 

array, 220 
iterations and arrays, 132 
iterative statements, 122 
iterators, 384 
 
 
KB (kilobyte), 7 
 
 
LAN, 9 
leaves (of a tree), 400 
left formatting flag, 64 
left-justified output, 547 
length() apstring member 

function, 212 
librarian, 253 
limits.h, 57, 72 
linked lists, 195 
linker, 19, 251, 253, 257 
LIFO (Last-In-First-Out), 314 
linear probing, 485 
linked lists, 291 

compared to arrays, 305 
creating, 292 
head, 293 
inserting a node, 296, 298 
InsertInOrder(…) function, 298 
removing a node, 302 
traversal, 293, 294, 310 
with a tail, 306 
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List ADT, 290, 310 
literal constants, 58 
literal strings, 200 
literal strings as pointers, 202 
local area networks, 9 
local variables, 66, 324 
local vs. global variables, 67 
logical operators &&, ||, !, 101, 104, 

120 
long data type, 55 
long double data type, 55 
lookup table, 477, 479 
loops, 122 
lvalue, 180 
 
 
machine code, 18 
main program, 29 
main(), 29 
mainframe computers, 9 
make program, 19 
manipulators, 64 

dec, 546 
endl, 546 
ends, 546 
for stream output formatting, 546 
hex, 546 
setfill, 546 
setprecision, 546 
setw, 546 

mantissa, 14 
mathematical induction, 338 
math.h, 205 
MB (megabyte), 7 
member functions, 38, 261 

const, 265 
inline, 266 
overloading, 268 
static, 390 

memory, 4, 5, 7 
addresses, 7, 10 
representation of information, 10 

menus in user interfaces, 147 
mergesort, 496 
merging, 490 
MIPS, 4 
MISD parallel computers, 5 

modems, 9 
modular software design, 244 
modulo division operator %, 80 
Monte Carlo methods, 172 
Morse Code, 423 
motherboard, 7 
MS DOS, 45 
multi-tasking, 17 
multi-user system, 17 
 
 
\n escape character (newline), 46, 58 
names 

defined by the programmer, 40 
negative integers 

representation of, 13 
nested blocks, 44, 48 
nested comments, 28 
nested for loops, 137 
nested if-else statements, 117 
nested iterators, 388 
nested structures, 231 
new operator, 192, 197 
newline character, 46 
n-factorial, 126 
node, 291 
“not” bit-wise operator ~, 533 
NULL (symbolic constant for 0 pointer), 

191 
null character, 200 
null pointer, 191 
null-terminated strings, 200 
numbers 

binary, 11 
representation in memory, 11 

 
 
object module, 19 
object module libraries, 253 
Object-Oriented Programming, 260 
open(…) stream member function, 548 
operating system, 8, 17 
operations research, 463 
operator overloading, 235, 370 

examples, 374 
operator [ ] (subscript), 542 
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operators 
binary, 106 
precedence of, 106 
unary, 106 

operators as functions, 236 
“or” bit-wise operator |, 533 
order of growth, 467 
order of operations, 74, 106 
ostream_withassign class, 551 
ostrstream, writing into a char array, 

219 
output formatting, 64 
overloaded operators 

examples, 374 
overloading member functions, 268 
overloading of functions and operators, 

235 
 
 
parameterized types, 281 
parsing, 437 
Pascal's triangle, 167 
pattern recognition, 476 
peek() istream member function, 

549 
peripheral devices, 4 
pivot element in quicksort, 499 
pixel, 9, 11, 45 
pointer arithmetic, 540 
pointers, 180 

accessing values pointed to, 185 
and arrays, 539 
initialization, 182, 197 
returning from functions, 195 
relational operators applied to, 540 

polymorphism, 526, 529 
polynomial growth, 471 
positive integers 

representation in memory, 12 
postfix notation, 441 
postorder traversal, 418 
precedence of operators, 106 
precision for floating-point data types, 

57 
prefix notation, 441 
preorder traversal, 418 
preprocessor, 35 
preprocessor directives, 37 

primary and secondary keys, 476 
priority queue, 448 
private inheritance, 514 
private members of a class, 261 
probing, 484 
procedures, 29 
program editor, 19 
projects, 211, 254 
promotion of data types in expressions, 

75 
prompt, 46 
protected inheritance, 514 
protected members of a class, 514 
pseudocode, 159 
pseudorandom numbers, 173 
public inheritance, 514 
public members of a class, 261 
pure virtual functions, 526 
push and pop CPU instructions, 324 
put(…) member function, 551 
 
 
quadratic growth, 468 
Queue ADT, 291 
queue data structure, 346 
quicksort, 499 
 
 
\r escape character (carriage return), 58 
radix sort, 507 
RAM, 4, 7 
rand(), 173 
RAND_MAX, 173 
random access, 295, 305 
random-access memory, 4, 7 
random numbers, 173 
range 

floating-point data types, 57 
int data type, 55 

read(…) istream member function, 
550 

reading files, 46, 134 
read-only memory, 8 
real numbers 

output formatting, 64 
representation of, 14 
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recursion, 328 
base case, 332 

recursive functions, 324, 328 
redundancy, 41 
references, 180 

accessing values referred to, 186 
initialization, 182, 197 

Reheap Up procedure, 453 
relational operators <, >, <=, >=, ==, 

!=, 103, 119 
relational operators for pointers, 540 
relational operators for apstring, 211 
representation of information in 

memory, 10 
reserved words, 30, 38, 48 
return address, 323 
return statement, 31, 130 
reusability of code, 109 
reverse Polish notation (RPN), 442 
right formatting flag, 64 
ring buffer, 346, 347 
RISC microprocessors, 6 
ROM, 8 
RPN (reverse Polish notation), 442 
rvalue, 180 
 
 
scope of variables and constants, 65 
scope resolution symbol ::, 267 
searching, 161, 476 
seekp(…) and seekg(…) stream I/O 

functions, 220, 550, 551 
segment registers, 7, 10 
selection sort, 159, 160, 492 
sequential search, 153 
sequential access, 295, 306 
serial port, 9 
setf(…) stream I/O function, 547 
setfill(ch) I/O manipulator, 546 
setprecision(d) I/O manipulator, 

64, 546 
setw(d) I/O manipulator, 64, 546 
shift operators, 536 
short data type, 55 
short-circuit evaluation, 107 
showpoint formatting flag, 64, 546 
signature of a function, 253 

SIMD parallel computers, 5 
SIMM, 4 
sin(x), 175 
sizeof(…) operator, 55, 72 
software 

locality, 244, 263 
maintenance, 244 
reusability, 244 

software modules, 244 
sorted arrays, 153 
sorting, 161, 476, 490 

through pointers, 491 
source code, 19, 25 
stack 

array implementation, 314, 315 
linked list implementation, 315 

Stack ADT, 314 
stack data structure, 314 
stack pointer, 187, 314 
standard input, 45 
standard library, 34 
standard output, 45 
static keyword, 255 
static_cast operator, 76 
static local variables, 66 
static member functions, 390 
static members of a class, 390 
Static variables and functions, 256 
stdlib.h, 173 
strcat(…), 204 
strchr(…), 205 
strcmp(…), 205 
strcpy(…), 204 
stream extraction operator >>, 46 
stream I/O classes, 45, 545 
stream I/O manipulators, 64, 546 
stream insertion operator <<, 46 
string class, 201 
string constants, 201 
string.h, 204 
strlen(…), 204 
strlwr(…), 205 
strstr(…), 205 
strstream.h header file, 219 
struct, 224 
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structures 
accessing members, 228 
and arrays, 229 
assignment, 227 
declarations, 225 
initialization, 226 
nested, 231 
passing to functions, 232 
returning from functions, 233 

strupr(…), 205 
subscript checking, 212 
subscripts of arrays, 86 
substr(…) apstring member 

function, 214 
subtree, 403, 405 
switch statement, 144, 146, 156 
symbolic constants, 58 
syntax errors, 41 
syntax rules, 19, 41 
system stack, 66, 187 
 
 
\t escape character (tab), 58 
tail recursion, 336, 502 
tellg() and tellp() member 

function, 550, 551 
templated classes, 89, 97, 281, 282 
templates, 281 
this pointer, 381 
time-sharing, 17 
tolower(ch), 150 
top-down program design, 52 
toupper(ch), 150 
Towers of Hanoi, 341 
tracing the program, 163 
traversal, 310 
traversal of a tree, 403 
tree, 400 

binary, 404 
children nodes, 400 
Destroy() function, 407, 408 
Find(…) function, 410 
height or depth, 401 
implemented as a class, 419 
Insert(…) function, 411 
leaves, 400 
nodes, 400 

parent node, 400 
Remove(…) function, 412 
root, 400 

tree traversal, 403, 417 
preorder, postorder and inorder, 417 

treesort, 504 
true and false values, 30, 102, 119 
two's-complement representation, 13 
two-dimensional arrays, 93 
typedef statement, 57 
 
 
UNIVAC computer, 4 
UNIX, 45 
unsetf(…) stream I/O function, 547 
unsigned data types, 55 
user prompt, 46 
user-defined data types, 71, 224 
 
 
variables, 50 

data types, 51 
declarations, 54, 63, 72 
global, 66 
initialization of, 60 
local, 66, 192 
of templated class type, 283 
scope, 54, 65 
static, 66 

video adapters, 9 
virtual functions, 525, 528 
von Neumann architecture, 5 
von Neumann, John, 5 
 
 
Weekday program, 108 
while loops, 122, 142 
while statement, 122 
write(…) ostream member function, 
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“xor” bit-wise operator ^, 533 
 
 



 

 




