

JJaavvaa
MMeetthhooddss
AA && AABB

Object-Oriented Programming
and

Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin

Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Library of Congress Control Number: 2005910949

ISBN-10: 0-9727055-7-0
ISBN-13: 978-0-9727055-7-8

Copyright © 2006 by Maria Litvin, Gary Litvin, and
Skylight Publishing

This material is provided to you as a supplement to the book
Java Methods A&AB. You may print out one copy for
personal use and for face-to-face teaching for each copy of
the Java Methods A&AB book that you own or receive from
your school. You are not authorized to publish or distribute
this document in any form without our permission. You are
not permitted to post this document on the Internet. Feel
free to create Internet links to this document’s URL on our
web site from your web pages, provided this document
won’t be displayed in a frame surrounded by advertisement
or material unrelated to teaching AP* Computer Science or
Java. You are not permitted to remove or modify this
copyright notice.

* AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
products’ manufacturers or trademarks’ owners.

Sun, Sun Microsystems, Java, and Java logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

Chapter

17 Mouse, Keyboard, Sounds,
and Images

17.1 Prologue 2
17.2 Mouse Events Handling 2
17.3 Keyboard Events Handling 4
17.4 Lab: Ramblecs Concluded 7
17.5 Sounds and Images 8
17.6 Case Study and Lab: Drawing Editor 12
17.7 Summary 17
 Exercises 	

 1

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

2 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

17.1 Prologue

JVM (Java Virtual Machine) has a “virtual” mouse that rolls on an x-y plane and has
up to three buttons. Mouse coordinates are actually the graphics coordinates of the
mouse cursor; they are in pixels, relative to the upper-left corner of the component
that registers mouse events. Mouse events can be captured by any object designated
as a MouseListener (that is, any object of a class that implements the
MouseListener interface).

Keyboard events can be captured by any object designated as a KeyListener.
Handling keyboard events in an object-oriented application is complicated by the fact
that a computer has only one keyboard and different objects need to listen to it at
different times. There is a fairly complicated system of passing the focus (the
primary responsibility for processing keyboard events) from one component to
another and of passing keyboard events from nested components up to their
“parents.” Handling mouse events is easier than handling keyboard events because
the concept of “focus” does not apply.

In this chapter we will discuss the technical details of handling the mouse and the
keyboard in a Java GUI application. We will also learn how to load and play audio
clips and how to display images and icons.

17.2 Mouse Events Handling

The MouseListener interface defines five methods: mousePressed,
mouseReleased, mouseClicked, mouseEntered, and mouseExited. Each of
these methods receives one parameter, a MouseEvent. If e is a MouseEvent,
e.getX() and e.getY() return the x and y coordinates of the event, relative to the
upper-left corner of the component (usually a panel) whose listener captures the
event. The getButton method returns an int value MouseEvent.NOBUTTON,
MouseEvent.BUTTON1, MouseEvent.BUTTON2, or MouseEvent.BUTTON3,
depending on which, if any, of the mouse buttons has changed state.

You add a mouse listener to a component by calling the component’s
addMouseListener method. It is often convenient to make a panel its own mouse
listener. To do that, the panel’s constructor can call addMouseListener(this)..
We’ve done that in JM\Ch15\Puzzle\Puzzle.java. A mouse listener can be also
implemented as a private inner class.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 3

A class that implements the MouseMotionListener interface has mouseMoved
and mouseDragged methods for processing events that report changes in the mouse
coordinates without a change in the button state. These methods are used together
with MouseListener methods. mouseMoved is called when the mouse is moved
with its button up; mouseDragged is called when the mouse is moved with its button
held down.

As you know, implementing a Java interface requires the programmer to implement

each method in the interface, even those that are never used. In our Puzzle program,
for example, only the mousePressed method of the mouse listener interface is used
— the remaining four are empty. To eliminate these empty methods, Java designers
came up with a MouseAdapter class. MouseAdapter implements all the
MouseListener methods as empty methods. You can extend the adapter class,
overriding only the methods you need in your MouseListener class. This is often
done using an anonymous inline class (Figure 17-1).

public class MyPanel extends JPanel
{
 public MyPanel() // constructor
 {
 ...

 addMouseListener(new
 MouseAdapter()
 {
 public void mouseClicked(MouseEvent e)
 {
 ... // process click at e.getX(), e.getY()
 }
 });
 ...
 }
}

Figure 17-1. Adding a MouseListener to a panel using MouseAdapter

An anonymous inline class is assumed to extend the class specified in the new
operator. In this case, the anonymous class extends MouseAdapter, overriding its
empty mouseClicked method. Here the whole expression new MouseAdapter()
{...} is passed as a parameter to the addMouseListener method. Unfortunately,
adapter classes undo the discipline of interfaces. If, for instance, you accidentally
type mouselicked instead of mouseClicked, the code will compile but mouse
events won’t be processed.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

4 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

17.3 Keyboard Events Handling

Any object of a class that implements the KeyListener interface can capture
keyboard events. A KeyListener can be attached to any Component by calling
that component’s addKeyListener method. However, before the component can
process the keystrokes, it must request focus — the responsibility for handling the
keyboard events. At different times different GUI components obtain focus. Some
GUI components, such as buttons or text field objects, receive the focus
automatically when they are clicked. Other components, such as JPanel objects,
must be explicitly activated by passing the focus to them. The focus is passed to a
component by calling the component’s requestFocus method.

In the Ramblecs program from Chapter 16, for example, we attached a
KeyListener to the control panel:

 controlpanel.addKeyListener(new RamblecsKeyboard(...));

The RamblecsKeyboard class implements KeyListener, and controlpanel is
an object of the class ControlPanel, which is a subclass of JPanel. However, our
controlpanel will never “hear” any keystrokes unless we call its requestFocus
method.

In Ramblecs, when you click on the button or move the slider, Swing automatically
shifts keyboard focus to that component, because the button and the slider normally
process keystrokes in their own way (for instance, a JButton is programmed to be
activated by the spacebar, and a JSlider responds to cursor keys). If you want
controlpanel get the focus back, the button listener’s actionPerformed and the
slider listener’s stateChanged has to call controlpanel’s requestFocus.

� � �

The KeyListener interface specifies three methods: keyPressed, keyReleased,
and keyTyped. Each of these methods receives one parameter, KeyEvent e. The
KeyEvent class distinguishes “character keys,” such as letters, digits, and so on,
from “action keys,” such as cursor keys, function keys, <Enter>, and so on. Action
keys do not have characters associated with them. These keys are identified by their
“virtual codes.” These virtual codes are defined as public static int constants in
the KeyEvent class. Table 17-1 shows the names of several commonly used action
keys. The VK prefix stands for “virtual key.” For instance, KeyEvent.VK_LEFT
refers to the left-arrow cursor key.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 5

VK_F1 through VK_F24

Function keys

VK_LEFT, VK_RIGHT,
VK_UP, VK_DOWN

Cursor arrow keys

VK_KP_LEFT, VK_KP_RIGHT,
VK_KP_UP, VK_KP_DOWN

Cursor arrow keys on the
numeric keypad

VK_HOME, VK_END,
VK_PAGE_UP, VK_PAGE_DOWN,
etc.

As implied by the names

Table 17-1. KeyEvent’s symbolic constants for virtual keys

The details of what happens on the keyboard, which methods are called in response,
and what value is passed to them in the KeyEvent are rather technical. For instance,
if you press the shift key and then ‘a’, then release ‘a’ and release shift, this will
result in two calls to keyPressed, two calls to keyReleased, and one call to
keyTyped.

To keep things simple, use the keyTyped method to capture characters
and use either the keyPressed or keyReleased method to capture
action keys. When an action key is pressed, keyTyped is not called.

In the keyTyped method, e.getKeyChar() returns the typed character. In the
keyPressed and keyReleased methods, e.getKeyCode() returns the virtual
code.

A KeyEvent object also has the boolean methods isShiftDown, isAltDown, and
isControlDown, which return true if the respective “modifier” key was held down
when the key event occurred.

� � �

A more general getModifiers method returns an integer whose individual bits,
when set, represent the pressed modifier keys: Shift, Ctrl, Alt, and so on. These
bits can be tested by using bit masks defined as static constants in KeyEvent.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

6 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

Let’s take this opportunity to review the use of Java’s bit-wise logical operators. For
example, we would use the bit-wise “and” operator to test whether a particular bit in
an integer is set to 1:

 if ((e.getModifiers() & KeyEvent.ALT_MASK) != 0)
 // if ALT is down ...

Here & is bit-wise “and.” A bit in the result is set to 1 if both corresponding bits in
the operands are 1. KeyEvent.ALT_MASK is an integer constant with only one bit
set in it. The condition tests whether this bit is also set in the value returned by
getModifiers (Figure 17-2).

getModifiers() 0010…0011001
KeyEvent.ALT_MASK 0000…0001000

============
0000…0001000

&

Figure 17-2. & operator used to test a particular bit in an integer

You can use a combined mask to test whether two modifier keys are held down at
once. For example:

 int mask = KeyEvent.SHIFT_MASK | KeyEvent.CTRL_MASK;

Here | is the bit-wise “or” operator: a bit in the result is set to 1 if at least one of the
corresponding bits in the operands is 1. So the above statement sets both the Shift
and Ctrl bits in mask (Figure 17-3). Then

 if ((e.getModifiers() & mask) == mask)

tests whether the two bits “cut out” by mask from the value returned by
getModifiers are both set (Figure 17-4).

Be very careful not to misuse bit-wise operators instead of && and ||
operators in boolean expressions. They are allowed, but they don’t
follow short-circuit evaluation rules.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 7

KeyEvent.SHIFT_MASK 0000…0000001
KeyEvent.CTRL_MASK 0000…0000010

============
0000…0000011

|

Figure 17-3. | operator is used to combine bits in two integers

getModifiers() 0010…0010110
mask 0000…0000011
 ============
getModifiers() & mask 0000…0000010

&

Figure 17-4. & operator is used to “cut out” mask bits from an integer

17.4 Lab: Ramblecs Concluded

In this lab we return to the Ramblecs program from the previous chapter. Your task
here is to write the RamblecsKeyListener class. This class implements the
KeyListener interface and handles keyboard input for Ramblecs.

The constructor for a RamblecsKeyListener takes two parameters: a
LetterPanel whiteboard and a ControlPanel controlpanel. Table 17-2
lists the actions that RamblecsKeyListener takes in response to keystrokes. All
other keyboard events should be ignored.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

8 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

Key Action

ENTER Calls whiteboard’s enterWord()

Spacebar Calls whiteboard’s dropWord()

Left/right cursor keys or
arrows on the numeric
keypad

Calls whiteboard’s
moveCubeLeft() or
moveCubeRight(), respectively

Up cursor key or arrow on
the numeric keypad

Calls whiteboard’s
rotateCube(-1)

Down cursor key or arrow
on the numeric keypad

Calls whiteboard’s rotateCube(1)

Ctrl-F Calls controlpanel’s speedUp()

Ctrl-S Calls controlpanel’s slowDown()

Table 17-2. Keyboard events in Ramblecs

Set up a project with your RamblecsKeyListener and our Ramblecs.java and
Ramblecs.jar from JM\Ch16\Ramblecs. Test your class.

17.5 Sounds and Images

JApplet’s getAudioClip method can be used to load an audio file into your
applet. The file can be a .wav file; some other popular formats (.au, .mid, etc.) are
supported, too. The file is actually loaded only when your applet attempts to play it
for the first time. You need to import Java’s AudioClip class to use this method:

import java.applet.AudioClip;

One overloaded form of getAudioClip takes one parameter: the URL (or
pathname) of a file. The URL must be an absolute URL. Use the forward slash to
separate directories in the string that represents a path — it works on all systems.

A more convenient form of getAudioClip takes two parameters: the path and file
names separately. In this form, you can use as the first parameter the URL returned

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 9

by the applet’s method getDocumentBase(), which returns the path of the HTML
file that runs the applet. The second parameter is usually a literal string, the file
name. For example:

 AudioClip bells = getAudioClip(getDocumentBase(), "bells.wav");

Alternatively, you can use as the first parameter getCodeBase(), which returns the
URL or path of the applet’s compiled code.

Once loaded, the clip can be played using its play method. For example:

 bells.play();

An application (not an applet) can use a static method newAudioClip(URL url) of
the Applet class to load an audio clip. To use this method, you first need to create a
URL object from the audio clip file’s name. See Sun’s tutorial for details [1].

We find this implementation counterintuitive and inelegant: Why use Applet’s
methods and URLs when you are working on an application? We also came across
some technical problems with AudioClip’s play method: it causes occasional
delays when a short sound clip is played frequently. That’s why we created our own
class, EasySound, for loading and playing sound clips. This class is adapted from
one of the more advanced examples found on the Sun Developer Network (SDN)
pages devoted to sound [1]. As you have seen in several projects and exercises, our
EasySound is easy to use. For example:

 EasySound chomp = new EasySound("drop.wav");
 chomp.play();

EasySound.java can be found in JM\EasyClasses; EasySound.class is
included in JM\EasyClasses\Easy.jar.

� � �

Java has two types of objects that represent images: Image and ImageIcon. Either
of these objects can be created by loading a picture from an image file. The two most
common formats for image files are .gif (Graphics Interchange Format,
pronounced “giff”) and .jpg (Joint Photographic Experts Group, pronounced “jay-
peg”) format.

You can use an applet’s getImage method to load an Image. This method is
analogous to the getAudioClip method discussed above. There are two forms of
getImage that take the same kinds of parameters as getAudioClip: the absolute

http://java.sun.com/docs/books/tutorial/sound/playing.html
http://java.sun.com/products/java-media/sound/index.jsp

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

10 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

URL (or pathname) of a file, or a path and a file name as two separate parameters. In
the latter form, the first parameter is often getDocumentBase().

The image file is actually loaded only when your program attempts to show it for the
first time. You need to import awt.Image to use getImage.

You display an image object by calling drawImage from any paint or
paintComponent method. Figure 17-5 offers an example.

import java.awt.Image;
import java.awt.Graphics;
import javax.swing.JApplet;

public class ImageTest extends JApplet
{
 private Image picture;

 public void init()
 {
 picture = getImage(getDocumentBase(), "teamPhoto.jpg");
 if (picture == null)
 {
 showStatus("Can't load teamPhoto.jpg");
 }
 }

 public void paint(Graphics g)
 {
 int x = 5, y = 10;
 if (picture != null)
 {
 g.drawImage(picture, x, y, null);
 }
 }
}

Figure 17-5. Drawing an image in an applet

In the drawImage call, the first parameter is a reference to the image; the second and
third are the x and y coordinates of the upper-left corner of the displayed image,
relative to the applet area or the component on which the image is drawn; and the
fourth is a reference to an ImageObserver object, usually null or this.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 11

image.getWidth(null) and image.getHeight(null) calls return
the raw dimensions of image.

� � �

Another way to load and show an image uses the ImageIcon class defined in the
Swing package. This works well in both applets and applications. An ImageIcon
object can be constructed directly from a file or a URL. For example:

 ImageIcon coin = new ImageIcon("coin.gif");

In this example, the coin.gif file is located in the same folder as the program’s
code.

An ImageIcon can be also constructed from an Image object. For example:

 private Image coinImage;
 < ... load this image, etc. >
 ImageIcon coin = new ImageIcon(coinImage);

You can display an ImageIcon object by calling its paintIcon method from any
paint or paintComponent method. See Figure 17-6 for an example.

import java.awt.Graphics;
import javax.swing.JPanel;
import javax.swing.ImageIcon;

public class IconTest extends JPanel
{
 private ImageIcon coin;

 public IconTest()
 {
 coin = new ImageIcon("coin.gif");
 }

 public void paintComponent(Graphics g)
 {
 int x = 5, y = 10;
 if (coin != null)
 coin.paintIcon(this, g, x, y);
 }
}

Figure 17-6. Drawing an ImageIcon

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

12 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

In the coin.paintIcon call, the first parameter is a reference to the component on
which the icon is displayed; the second is a reference to the Graphics context; and
the third and fourth are the x and y coordinates of the upper-left corner of the image,
relative to the upper-left corner of the component on which the icon is painted.

The getIconWidth() and getIconHeight() calls return the
dimensions of the icon; you can also get the icon’s image by calling its
getImage method.

Many Swing components, including JButton, JCheckBox, JRadioButton, and
JLabel, have convenient constructors and a setIcon method that allow you to add
an icon to these components (see Appendix D).

17.6 Case Study and Lab: Drawing Editor

In this lab we will create a Drawing Editor program in which the user can add several
filled circles of different colors and sizes to the picture and drag and stretch or
squeeze them with the mouse or cursor keys. Figure 17-7 shows a snapshot from the
program. The program’s control panel has two buttons: one for choosing a color,
another for adding a “balloon” (a filled circle) to the picture. The third disabled
small button in the middle shows the currently selected color.

Figure 17-7. The BalloonDraw program

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 13

The user can “grab” any balloon by pressing and holding the mouse on it. The
grabbed balloon changes from a solid (filled) shape to the outline only. If the user
grabs the balloon somewhere inside it, then he can drag it with the mouse to a new
location (while its size remains unchanged); if he grabs the balloon in the vicinity of
its border, then he can stretch or squeeze the balloon while its center remains in the
same location. When the mouse button is released, the balloon goes back to its solid
shape.

The last balloon added or “grabbed” becomes the “active” balloon. The user can
move it using cursor (arrow) keys and stretch or squeeze it using the cursor keys with
the Ctrl key held down. Click on the BalloonDraw.jar file in JM\Ch17\Draw to
see how it all works.

The program consists of four classes (Figure 17-8). BalloonDraw (derived from
JFrame) represents the program window; ControlPanel (derived from JPanel)
represents the panel that holds the buttons; DrawingPanel represents the canvas on
which balloons are drawn, and Balloon represents a balloon object.

BalloonDraw

Balloon

DrawingPanel

ControlPanel

Figure 17-8. Classes in BalloonDraw

Our Drawing Editor program uses a JColorChooser for choosing a color. You can
learn about it from the “How to Use Color Choosers” lesson [1] in Sun’s Java
tutorial.

http://java.sun.com/docs/books/tutorial/uiswing/components/colorchooser.html

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

14 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

In the previous labs, we provided the GUI front-end classes, while you implemented
the “back-end” classes — the details of arithmetic or logic. This is your chance to
write a complete program from scratch.

1. BalloonDraw

The BalloonDraw class extends JFrame. In the BalloonDraw’s constructor
display “Drawing Editor” in the title bar. Create a DrawingPanel canvas and a
ControlPanel controls, passing canvas to the ControlPanel’s constructor as
a parameter (so that controls knows what it controls). Attach canvas and
controls to the appropriate regions of the JFrame’s content pane. To complete the
BalloonDraw class, provide a standard main method that opens a BalloonDraw
window on the screen.

2. ControlPanel

ControlPanel extends JPanel. Add three buttons to it: “Pick Color,” color
display, and “Add Balloon.” The color display button is a small disabled button in
the middle; its purpose is to show the currently selected color. Call canvas’s
getColor method to obtain the initial color. Attach the appropriate listener to the
“Pick Color” and “Add Balloon” buttons, using the control panel itself as a listener,
or, if you prefer, objects of two different inner action listener classes or anonymous
inline classes. When “Pick Color” is clicked, call canvas’s pickColor method,
then get the selected color back from canvas and show that color on the color
display button. When “Add Balloon” is clicked, call canvas’s addBalloon
method. Don’t forget to return the keyboard focus to canvas in either event.

3. DrawingPanel

This is where all the work is done. This class is a subclass of JPanel and it
implements the MouseListener, MouseMotionListener, and KeyListener
interfaces. In the DrawingPanel constructor, add this panel to itself as these three
listeners. (If you prefer, implement the three listeners in private inner classes and add
them to this panel).
A DrawingPanel maintains a list of balloons (an ArrayList<Balloon>) and a
reference to the “active balloon.” The latter refers to the last added balloon or the
balloon last picked with a mouse (a balloon is “picked” when the mouse clicks inside
of it or on its border). DrawingPanel should also have an enum field or boolean
fields that indicate whether a balloon is currently picked and, if so, whether it is
being moved or stretched.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 15

DrawingPanel’s constructor and some of the methods are summarized in
Table 17-3. The methods that implement the requirements of the MouseListener,
MouseMotionListener, and KeyListener interfaces are not shown. Of these
only mousePressed, mouseReleased, mouseDragged, and keyPressed are
used.

Constructor:

DrawingPanel()

Sets the background color to white and the
initial drawing color to blue. Adds this as
the MouseListener,
MouseMotionListener, and
KeyListener. Creates an empty balloon
list.

Methods:

Color getColor() Returns the current drawing color.

void pickColor()

Called from ControlPanel when the
“Pick Color” button is clicked. Brings up a
JColorChooser and sets the chosen
color as the new drawing color. Leaves the
drawing color unchanged if the user clicks
“Cancel.”

void addBalloon()

Called from ControlPanel when the
"Add Balloon" button is clicked. Adds a
new balloon to the list. The new balloon
has its center at the center of the drawing
panel, a random radius (within a reasonable
range) and the current drawing color. The
new balloon is designated as the “active
balloon.”

void paintComponent(Graphics g)

Draws all the balloons in the list. The
balloons should be drawn in reverse from
the order in which they were added to the
list. However, if one of the balloons is
“picked,” then this “active balloon” should
be drawn last, in outline only.

Table 17-3. The constructor and methods of the DrawingPanel class
(except the listener methods)

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

16 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

When the mouse is pressed on balloons, make sure you pick the topmost balloon that
contains the coordinates of the click. If you add balloons at the end of the list, then
you need to scan the list from the end backward to achieve that.

The secret for smooth dragging action is to keep constant the x-y offsets from the
current mouse position to the current balloon’s center as the mouse moves. Save
these offsets when the mouse button is first pressed down, then set the active
balloon’s coordinates in mouseDragged in such a way that these offsets remain the
same.

If the initial click happens in the vicinity of the border of a balloon (that is,
isOnBorder(x,y) returns true), then instead of dragging the balloon make the
mouse motion stretch or squeeze it. You need a boolean field in DrawingPanel to
mark whether you will be moving or stretching the picked balloon. The same
principle as for moving applies for smooth stretching action, only this time the
distance from the current mouse position to the balloon’s border must remain
constant. (This distance is equal to the distance from the balloon’s center, returned
by balloon.distance(x,y), minus the balloon’s radius.)

Enable cursor keys to move the “active balloon” (if not null) or to stretch or
squeeze it when the Ctrl key is held down.

Don’t forget to call repaint after adding a balloon and whenever one of the listener
methods changes the appearance of the picture.

4. Balloon

This class implements a circle with a given center, radius, and color. Its constructor
and methods are summarized in Table 17-4.

Thoroughly test all the mouse and keyboard action in your program.

Consider what it would take to support balloons of different shapes:
round, elongated horizontally, and elongated vertically.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 17

Constructor:

Balloon(int x, int y,
 int radius, Color color)

Creates a balloon with the center at (x, y)
with the specified radius and color.

Methods:

int getX()

Returns the x-coordinate of the center.

int getY()

Returns the y-coordinate of the center.

int getRadius()

Returns the radius.

double distance(int x, int y)

Returns the distance from the point (x, y) to
the center of this balloon.

void move(int x, int y)

Moves the center of this balloon to (x, y).

void setRadius(int r)

Sets the radius of this balloon to r.

boolean isInside(int x, int y) Returns true if the point (x, y) lies inside
this balloon (and not on the border), false
otherwise.

boolean isOnBorder(int x, int y) Returns true if the point (x, y) lies
approximately on the border of this balloon,
false otherwise.

void draw(Graphics g,

 boolean filled)
Draws this balloon. Draws a filled circle if
filled is true, and a hollow circle
otherwise.

Table 17-4. The constructor and public methods of the Balloon class

17.7 Summary

Mouse events on a component can be captured and processed by a MouseListener
object attached to that component. A mouse listener is added to a component
(usually a panel) by calling its addMouseListener method. It is not uncommon for
a panel to be its own mouse listener or use a private inner class. A class that
implements a mouse listener interface must have five methods: mousePressed,
mouseReleased, and mouseClicked, called upon the corresponding button action,

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

18 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES

and mouseEntered and mouseExited, called when the mouse cursor enters or
leaves the component. Each of these methods takes one parameter, a MouseEvent.
e.getX() and e.getY() return the x and y coordinates of the event in pixels,
relative to the upper-left corner of the panel whose listener captures it.

For more detailed mouse tracking you can use a MouseMotionListener which has
two more methods, mouseMoved and mouseDragged. These methods are called
when the mouse moves with the button up or down, respectively.

Adapter classes allow a programmer to supply only those listener methods that the
program actually uses, inheriting the other (empty) methods from the adapter class.

Keyboard events can be captured and processed by a KeyListener object: an object
of a class that implements the KeyListener interface and defines the keyPressed,
keyReleased, and keyTyped methods. You add a key listener to a component by
calling its addKeyListener method. A component must obtain “focus” by calling
the requestFocus method to enable processing of keyboard events.

The keyPressed and keyReleased methods are used to process “action” keys
(such as, Enter, cursor keys, home, etc.). The keyTyped method is called for
“typed” keys that represent a character. Each of these three methods takes one
parameter of the KeyEvent type. KeyEvent’s getKeyCode method returns the
virtual code of the key, such as VK_ENTER, VK_LEFT, VK_HOME, and so on.
KeyEvent’s getKeyChar method returns the typed character. KeyEvent’s
boolean methods isShiftDown, isControlDown, isAltDown return true if the
corresponding modifier key, Shift, Ctrl, Alt, was held down when the event
occurred. The getModifiers method returns an integer that holds a combination of
bits representing the pressed modifier keys. KeyEvent has static constants defined
for different modifier bits: KeyEvent.SHIFT, KeyEvent.CTRL, and so on.

You can load an audio file (a .wav file or a file in one of several other popular
formats) into your applet by calling JApplet’s getAudioClip method. To play it,
call AudioClip’s play method. In applications, use our EasySound class instead.

An Image object can be loaded from a .gif or .jpg file by calling JApplet’s
getImage method; to display it, call Graphics’s drawImage method.

The ImageIcon class in Swing provides another way to represent an image in your
program. ImageIcon’s constructor loads an icon from a file, and ImageIcon’s
paintIcon method displays the image. An ImageIcon object can be added to any
JLabel, JButton, JCheckBox, or JRadioButton object.

C
op

yr
ig

ht
 ©

 2
00

7
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 CHAPTER 17 ~ MOUSE, KEYBOARD, SOUNDS, AND IMAGES 19

	 Exercises 	

The exercises for this chapter are in the book (Java Methods A and AB: Object-
Oriented Programming and Data Structures, AP Edition, ISBN 0-9727055-7-0,
Skylight Publishing, 2006 [1]).

http://www.skylit.com/

	Mouse, Keyboard, Sounds, and Images
	Prologue
	Mouse Events Handling
	Keyboard Events Handling
	Lab: Ramblecs Concluded
	Sounds and Images
	Case Study and Lab: Drawing Editor
	Summary

	(Exercises (

