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             Appendix D:  EasyReader, EasyWriter, 
EasySound, EasyDate 

 
 
“Easy” classes are intended for novices.  They provide a simplified “façade” for more 
technical Java library solutions for the same tasks.  Each of these classes has a simple 
example of its use in its source file and in the Javadoc documentation. 
 

Feel free to use and distribute these classes in any way you want. 
 
The source code is available in the JM\EasyClasses folder and the compiled 
classes are collected in JM\EasyClasses\EasyClasses.jar.  The Javadoc 
documentation is in JM\EasyClasses\EasyClassesDocs.zip.  Unzip and click 
on index.html in the docs folder. 
 

EasyReader and EasyWriter 
 
We have provided EasyReader and EasyWriter classes to supplement Java’s stream 
I/O classes.  EasyReader lets you read numbers, characters, words, and lines of text 
from the keyboard and from a text file.  EasyWriter lets you write these data 
elements into a text file (or append data to an existing file).  
 
EasyReader was written before java.util.Scanner came into existence in the 
Java 5.0 release.  EasyReader is similar to Scanner; it is a little easier to use than 
Scanner for reading keyboard input because it provides a no-args constructor that 
creates an EasyReader for reading from System.in.  EasyReader is easier to use 
for reading from a text file because it has a constructor, 
EasyReader(String pathname).  (Scanner also has a constructor that takes one 
String parameter, but it interprets it as a string to be scanned for input.)  
EasyReader has a method for reading one character from the console or from a file; 
Scanner does not.  
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EasyWriter allows you to create or open a text file for writing and write text into it 
using the print, println, and printf methods.  It eliminates exception handling 
and complicated constructors that use wrapper classes.  
 
To open the standard input stream for reading keyboard input use  
 
    EasyReader kboard = new EasyReader(); 

 
kboard is the name you give to the input stream (can be anything you like).  
To open a text file for reading use  
 
    EasyReader inputFile = new EasyReader(pathname); 

 
inputFile is the name you give to the input stream associated with the file (can be 
anything you like); pathname is a String that holds the file name or an absolute or 
relative pathname for the file. 
  
Call the bad() method to check the status of the file.  It returns true if the file is not 
opened properly or if there is an error or end of file; false otherwise.  For example:  
 
    EasyReader inputFile = new EasyReader(pathname); 
    if (inputFile.bad()) 
    { 
      System.err.println("Cannot open " + pathname); 
      System.exit(1); 
    } 

 
Examples for reading data from the keyboard or a file:  
 
    int n = kboard.readInt();            // reads an integer 
    double x = kboard.readDouble();      // reads a double 
 
    char ch = inputFile.readChar();      // reads any character, 
                                         //   including whitespace 
    String word = inputFile.readWord();  // reads a contiguous string of 
                                         //   non-whitespace characters 
 
    // Read and process all lines from a file: 
    String line; 
    while ((line = inputFile.readLine()) != null) 
    { 
      // process line: 
      ... 
    }  
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Notes: 

1. readInt, readDouble, readChar, and readWord methods do not consume 
the end of the line after reading the last item. Call readLine to get rid of the tail 
of the line (even if only the newline character is left) before calling readLine on 
the next line. 

2. readInt and readDouble methods do not verify that the next token holds a 
valid number and return 0 or Double.NaN, respectively, if it doesn’t.  

 
Call inputFile.close() to close the file.  
 
 To open a text file for writing use  
 
    EasyWriter outputFile = new EasyWriter(pathname); 

or  
    EasyWriter outputFile = new EasyWriter(pathname, "app"); 

 
if you want to append data to an existing file.  outputFile is the name you give to 
the output stream associated with the file (can be anything you like); pathname is a 
String that holds the file name or an absolute or relative pathname for the file.  
Be careful:  
 

new EasyWriter(pathname) wipes out the contents of the file if it 
already exists. 

 
Call the bad() method, which returns true if the attempt to create the file (or to 
open the file for appending) has failed; false otherwise.  
 
Use print, println, and printf methods, the same way as with System.out, to 
write data to a file. For example:  
 
    outputFile.print("x = "); 
    outputFile.println(x); 

or  
    outputFile.printf("x = %5.2f\n", x); 

 
Call outputFile.println() to write a blank line.  
Call outputFile.close() to close the file.  
 
Note:  
 
If you forget to close the file, some of the data may remain in the output buffer but 
not written to the file. 
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EasySound 
 
This class provides an easy way to load and play a sound clip in a Java application 
(as opposed to a Java applet).  For example: 
 
    EasySound bells = new EasySound("bells.wav"); 
    ... 
    bells.play(); 

 

EasyDate 
 
The EasyDate class handles dates in a simple manner.  EasyDate has a method that 
adds a number of days to this date, and a method that calculates the number of days 
from this date to another one.  EasyDate objects are immutable.  
 
Example:  
 
    EasyDate today = new EasyDate(); 
    System.out.println("Today is " + today); 
   
    EasyDate tomorrow = today.add(1); 
    EasyDate yesterday = today.add(-1); 
   
    int yr = today.getYear(); 
    System.out.println(yr + " is a leap year: true or false? " + 
                                     EasyDate.isLeapYear(yr)); 
   
    EasyDate myBirthday = new EasyDate(bDayMonth, bDayDay, yr); 
   
    if (today.equals(myBirthday)) 
      System.out.println("Today is my birthday"); 
    else if (yesterday.equals(myBirthday)) 
      System.out.println("My birthday was yesterday"); 
    else 
    { 
      if (myBirthday.compareTo(today) < 0) 
        myBirthday = new EasyDate(bDayMonth, bDayDay, yr + 1); 
      System.out.println(today.daysTo(myBirthday) + 
                     " days are left until my next birthday"); 
    } 

 


