

JJaavvaa
MMeetthhooddss

Object-Oriented Programming
and

Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin

Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Second AP* Edition
— with GridWorld

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2011 by Maria Litvin, Gary Litvin, and
Skylight Publishing

This material is provided to you as a supplement to the book
Java Methods, second AP edition You may print out one
copy for personal use and for face-to-face teaching for each
copy of the Java Methods book that you own or receive from
your school. You are not authorized to publish or distribute
this document in any form without our permission. You are
not permitted to post this document on the Internet. Feel
free to create Internet links to this document’s URL on our
web site from your web pages, provided this document won’t
be displayed in a frame surrounded by advertisement or
material unrelated to teaching AP* Computer Science or
Java. You are not permitted to remove or modify this
copyright notice.

Library of Congress Control Number: 2010915303

ISBN 978-0-9824775-7-1

* AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
product manufacturers or trademark owners.

Oracle, Java, and Java logos are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates in the U.S. and other countries.

SCRABBLE® is the registered trademark of HASBRO in the United States and Canada and
of J.W. Spear and Sons, PLC, a subsidiary of Mattel, Inc., outside the United States and
Canada.

 D-1

 Appendix D: EasyReader, EasyWriter,
EasySound, EasyDate

“Easy” classes are intended for novices. They provide a simplified “façade” for more
technical Java library solutions for the same tasks. Each of these classes has a simple
example of its use in its source file and in the Javadoc documentation.

Feel free to use and distribute these classes in any way you want.

The source code is available in the JM\EasyClasses folder and the compiled
classes are collected in JM\EasyClasses\EasyClasses.jar. The Javadoc
documentation is in JM\EasyClasses\EasyClassesDocs.zip. Unzip and click
on index.html in the docs folder.

EasyReader and EasyWriter

We have provided EasyReader and EasyWriter classes to supplement Java’s stream
I/O classes. EasyReader lets you read numbers, characters, words, and lines of text
from the keyboard and from a text file. EasyWriter lets you write these data
elements into a text file (or append data to an existing file).

EasyReader was written before java.util.Scanner came into existence in the
Java 5.0 release. EasyReader is similar to Scanner; it is a little easier to use than
Scanner for reading keyboard input because it provides a no-args constructor that
creates an EasyReader for reading from System.in. EasyReader is easier to use
for reading from a text file because it has a constructor,
EasyReader(String pathname). (Scanner also has a constructor that takes one
String parameter, but it interprets it as a string to be scanned for input.)
EasyReader has a method for reading one character from the console or from a file;
Scanner does not.

D-2 APPENDIX D ~ EASYCLASSES

EasyWriter allows you to create or open a text file for writing and write text into it
using the print, println, and printf methods. It eliminates exception handling
and complicated constructors that use wrapper classes.

To open the standard input stream for reading keyboard input use

 EasyReader kboard = new EasyReader();

kboard is the name you give to the input stream (can be anything you like).
To open a text file for reading use

 EasyReader inputFile = new EasyReader(pathname);

inputFile is the name you give to the input stream associated with the file (can be
anything you like); pathname is a String that holds the file name or an absolute or
relative pathname for the file.

Call the bad() method to check the status of the file. It returns true if the file is not
opened properly or if there is an error or end of file; false otherwise. For example:

 EasyReader inputFile = new EasyReader(pathname);
 if (inputFile.bad())
 {
 System.err.println("Cannot open " + pathname);
 System.exit(1);
 }

Examples for reading data from the keyboard or a file:

 int n = kboard.readInt(); // reads an integer
 double x = kboard.readDouble(); // reads a double

 char ch = inputFile.readChar(); // reads any character,
 // including whitespace
 String word = inputFile.readWord(); // reads a contiguous string of
 // non-whitespace characters

 // Read and process all lines from a file:
 String line;
 while ((line = inputFile.readLine()) != null)
 {
 // process line:
 ...
 }

 APPENDIX D ~ EASYCLASSES D-3

Notes:

1. readInt, readDouble, readChar, and readWord methods do not consume
the end of the line after reading the last item. Call readLine to get rid of the tail
of the line (even if only the newline character is left) before calling readLine on
the next line.

2. readInt and readDouble methods do not verify that the next token holds a
valid number and return 0 or Double.NaN, respectively, if it doesn’t.

Call inputFile.close() to close the file.

 To open a text file for writing use

 EasyWriter outputFile = new EasyWriter(pathname);

or
 EasyWriter outputFile = new EasyWriter(pathname, "app");

if you want to append data to an existing file. outputFile is the name you give to
the output stream associated with the file (can be anything you like); pathname is a
String that holds the file name or an absolute or relative pathname for the file.
Be careful:

new EasyWriter(pathname) wipes out the contents of the file if it
already exists.

Call the bad() method, which returns true if the attempt to create the file (or to
open the file for appending) has failed; false otherwise.

Use print, println, and printf methods, the same way as with System.out, to
write data to a file. For example:

 outputFile.print("x = ");
 outputFile.println(x);

or
 outputFile.printf("x = %5.2f\n", x);

Call outputFile.println() to write a blank line.
Call outputFile.close() to close the file.

Note:

If you forget to close the file, some of the data may remain in the output buffer but
not written to the file.

D-4 APPENDIX D ~ EASYCLASSES

EasySound

This class provides an easy way to load and play a sound clip in a Java application
(as opposed to a Java applet). For example:

 EasySound bells = new EasySound("bells.wav");
 ...
 bells.play();

EasyDate

The EasyDate class handles dates in a simple manner. EasyDate has a method that
adds a number of days to this date, and a method that calculates the number of days
from this date to another one. EasyDate objects are immutable.

Example:

 EasyDate today = new EasyDate();
 System.out.println("Today is " + today);

 EasyDate tomorrow = today.add(1);
 EasyDate yesterday = today.add(-1);

 int yr = today.getYear();
 System.out.println(yr + " is a leap year: true or false? " +
 EasyDate.isLeapYear(yr));

 EasyDate myBirthday = new EasyDate(bDayMonth, bDayDay, yr);

 if (today.equals(myBirthday))
 System.out.println("Today is my birthday");
 else if (yesterday.equals(myBirthday))
 System.out.println("My birthday was yesterday");
 else
 {
 if (myBirthday.compareTo(today) < 0)
 myBirthday = new EasyDate(bDayMonth, bDayDay, yr + 1);
 System.out.println(today.daysTo(myBirthday) +
 " days are left until my next birthday");
 }

