

Object-Oriented Programming
and

Data Structures

Maria Litvin
Phillips Academy, Andover, Massachusetts

Gary Litvin

Skylight Software, Inc.

Skylight Publishing
Andover, Massachusetts

Third AP Edition

Skylight Publishing
9 Bartlet Street, Suite 70
Andover, MA 01810

web: http://www.skylit.com
e-mail: sales@skylit.com
 support@skylit.com

Copyright © 2015 by Maria Litvin, Gary Litvin, and
Skylight Publishing

This material is provided to you as a supplement to the book Java
Methods, third AP edition You may print out one copy for
personal use and for face-to-face teaching for each copy of the
Java Methods book that you own or receive from your school.
You are not authorized to publish or distribute this document in
any form without our permission. You are not permitted to post
this document on the Internet. Feel free to create Internet links
to this document’s URL on our web site from your web pages,
provided this document won’t be displayed in a frame surrounded
by advertisement or material unrelated to teaching AP* Computer
Science or Java. You are not permitted to remove or modify this
copyright notice.

Library of Congress Control Number: 2014922396

ISBN 978-0-9824775-6-4

* AP and Advanced Placement are registered trademarks of The College Board, which was
not involved in the production of and does not endorse this book.

The names of commercially available software and products mentioned in this book are
used for identification purposes only and may be trademarks or registered trademarks
owned by corporations and other commercial entities. Skylight Publishing and the authors
have no affiliation with and disclaim any sponsorship or endorsement by any of these
product manufacturers or trademark owners.

Oracle, Java, and Java logos are trademarks or registered trademarks of Oracle Corporation
and/or its affiliates in the U.S. and other countries.

Chapter: 17

17 GUI Components and Events

17.1 Prologue 17-2
17.2 Pluggable Look and Feel 17-3
17.3 Basic Swing Components and Their Events 17-6
17.4 Layouts 17-11
17.5 Menus 17-14
17.6 Case Study and Lab: the Ramblecs Game 17-15
17.7 Summary 17-18
 Exercises 	

 17-1

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

17-2 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

17.1 Prologue

In this chapter we discuss the basics of graphical user interfaces and event-driven
programming in Java. Event-driven GUI is what made the OOP concept popular,
and it remains the area where it’s most relevant. While you can write console
applications in Java, such programs won’t take full advantage of Java or OOP; in
most cases such programs could just as well be written in C or Python. The style of
modern user interfaces — with many different types of control components such as
menus, buttons, pull-down lists, checkboxes, radio buttons, and text edit fields —
provides an arena where OOP and event-driven programming naturally excel.

Our task in this chapter and the following one is to organize more formally the bits
and pieces of the Swing package and multimedia that you have managed to grasp
from our examples so far. Overall, the Java API lists hundreds of classes and
interfaces, with thousands of constructors and methods. A sizable portion of the API
— more than 100 classes — deals with Swing GUI components, events handlers, and
multimedia. The online documentation in HTML format gives you convenient
access to these detailed specifications. Still, it is not very easy to find what you need
unless you know exactly what to look for. In many cases it may be easier to look up
an example of how a particular type of object is used than to read about it in the API
spec file. In most cases you need only the most standard uses of classes and their
methods, and there are thousands of examples of these in JDK demos, books, online
tutorials, and other sources.

This is the approach our book has taken, too. While introducing Java’s fundamental
concepts and basic syntax and control structures, we have sneaked in a variety of
commonly used GUI methods and “widgets.” We have added some bells and
whistles here and there, just so you could see, if you cared to, how such things might
be done. This chapter summarizes what you have already seen and fills in some
gaps. Appendix C presents a synopsis and an index of the more commonly used GUI
components that appear in the code examples in this book.

Knowing all the details of the latest GUI package still does not guarantee that the
GUI in your application will “work.” In addition to working the way you, the
programmer, intend, it must also be intuitive and convenient for the user. Designing
a good user interface is a matter of experience, good sense, trial and error, paying
attention to the software users, developing prototypes, and in some cases, relying on
more formal “human factors” research. To become a good user interface designer,
one should gain experience with a wide range of applications, observe what works

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 17.2 ~ PLUGGABLE LOOK AND FEEL 17-3

and what doesn’t, and absorb the latest styles from cyberspace. Note that, strictly
speaking, this skill may not be directly related to programming skills.

In this chapter we will discuss the “pluggable look and feel” and a few basic Swing
components:

 y JLabel — displays an icon or a line of text

 y JButton — triggers an “action event” when pressed

 y JToggleButton and JCheckBox — toggle an option

 y JComboBox and JRadioButton — choose an option out of several
possibilities

 y JSlider — adjusts a setting

 y JTextField, JPasswordField, and JTextArea — allow the user to enter
and display or edit a line of text, a password, or a multi-line fragment of text,
respectively

 y JMenuBar, JMenu, JMenuItem — support pull-down menus.

We will discuss some of the methods of these GUI objects and the events they
generate. We will also get familiar with four layout managers that help to arrange
GUI components on the application’s window.

17.2 Pluggable Look and Feel

The phrase look and feel refers to the GUI aspect of a program: the appearance of
windows, menus, dialog boxes, toolbars, and other GUI components; feedback for
selected actions; navigation between screens; keyboard commands; sounds; and so
on. Each operating system has its own look and feel, used by the system GUI and by
built-in applications (such as Windows Explorer) as well as by other applications that
choose to emulate the system’s look and feel (such as Internet Explorer or Microsoft
Office). An operating system may allow users to customize some aspects of the look
and feel, for example, by selecting a color scheme or the appearance of file folders.

Software development tools available for a particular operating system help
programmers develop applications that emulate the system look and feel. A
programmer can, of course, opt for an entirely different look and feel for his program,
but, in general, it is not a good idea to surprise users. An unexpected interface will
make it more difficult to learn how to use the program or to get used to its look and
feel. So most programs use standard GUI components: buttons, pull-down boxes,
sliders, checkboxes, radio buttons, and so on.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

17-4 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

The look and feel differs slightly from system to system. To a large extent, this is a
matter of marketing considerations and proprietary software issues among software
companies. Look and feel also evolves with time, but it follows the same general
trends in different operating systems.

The look and feel issue poses a dilemma for Java developers. On one hand, Java
applications are supposed to be platform-independent, so they should look and feel
exactly the same on different computer systems. On the other hand, users of a
particular system are accustomed to the look and feel of that system and may be
reluctant to work with programs that don’t fit the mold. Java’s response to this
dilemma is pluggable look and feel (PLAF). The programmer or the user can choose
among several look and feel configurations, including the standard Java look and feel
and a system-specific look and feel.

Support for PLAF is one of the features of the Swing package. Swing’s UIManager
class has a static method that returns an array of installed PLAFs. For example:

 UIManager.LookAndFeelInfo[] plafs =
 UIManager.getInstalledLookAndFeels();
 for (UIManager.LookAndFeelInfo plaf : plafs)
 System.out.println(plaf.getClassName());

The output under Windows might look like this:

javax.swing.plaf.metal.MetalLookAndFeel
javax.swing.plaf.nimbus.NimbusLookAndFeel
com.sun.java.swing.plaf.motif.MotifLookAndFeel
com.sun.java.swing.plaf.windows.WindowsLookAndFeel
com.sun.java.swing.plaf.windows.WindowsClassicLookAndFeel

“Metal” is the name of the system-independent (cross-platform) Java look and feel;
“Motif” is the look and feel typical for Unix and Linux systems; “Windows” is the
system-specific look and feel under Windows.

UIManager provides static methods that return the names of the platform-
independent and system-specific PLAFs, respectively. For example:

 System.out.println(UIManager.getCrossPlatformLookAndFeelClassName());
 System.out.println(UIManager.getSystemLookAndFeelClassName());

The output under Windows will be:

javax.swing.plaf.metal.MetalLookAndFeel
com.sun.java.swing.plaf.windows.WindowsLookAndFeel

There are several ways to set the look and feel for your Java program.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 17.2 ~ PLUGGABLE LOOK AND FEEL 17-5

1. Setting PLAF using the swing.properties file

This is the most general way to affect how all Java programs look on your computer.
The swing.properties file resides in the <JreHome>/lib folder, where
JreHome is the root directory where the JRE (Java Run-time Environment) is
installed (for example, C:\Program Files\Java\jre1.8.0_25).* If the
swing.properties file does not exist, you can create one. To set the default
PLAF, add the defaultlaf attribute to the swing.properties file. For example:

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

This will make all Java programs use the Windows LAF by default.

2. Setting PLAF using a command-line switch

You can override the swing.properties file setting by using a command line
switch when you run a Java application. For example:

C:\mywork>java -Dswing.defaultlaf=
 javax.swing.plaf.metal.MetalLookAndFeel MyProg

If you are using an IDE, there is usually a way to add command-line options for
programs.

3. Setting PLAF in the program

The most definitive way to set a desired LAF is to do it within the code of your
program. This setting overrides both the swing.properties file and the command
line option. To set LAF in the program, call the UIManager’s setLookAndFeel
method. For example:

 String plafName = UIManager.getSystemLookAndFeelClassName();
 try
 {
 UIManager.setLookAndFeel(plafName);
 }
 catch (Exception ex)
 {
 System.out.println("*** " + plafName + " PLAF not installed ***");
 }

* Actually, there may be two copies of the swing.properties file: one in the
<JreHome>\lib folder, for runnable files, and one in the <JdkHome>\jre\lib folder
for development. Both copies need to be modified.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

17-6 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

If LAF is not specified in the swing.properties file, on the command-
line, or in the program, then Java sets the cross-platform “Metal” look
and feel by default.

The “Metal” LAF looks quite close to the Windows XP “silver” style, but the
JFileChooser component looks too bland and is hard to get used to after fancier
Windows and Mac screens. “Nimbus” is a newer, more polished, cross-platform look
and feel, added in Java 6.

You can find a few more details on setting look and feel in Oracle’s Java tutorial [1].

17.3 Basic Swing Components and Their Events

Some of the more commonly used Swing components are:

 y JLabel — displays an icon or a line of text

 y JButton — triggers an “action event” when pressed

 y JToggleButton and JCheckBox — toggle an option

 y JComboBox and JRadioButton — choose an option out of several
possibilities

 y JSlider — adjusts a setting

 y JTextField, JPasswordField, and JTextArea — allow the user to enter
and display or edit a line of text, a password, or a multi-line fragment of text,
respectively

 y JMenuBar, JMenu, JMenuItem — support pull-down menus.

Each of these GUI objects is created using one of its constructors. For example, one
of JLabel’s constructors takes one String parameter — the line of text to be
displayed. Another constructor takes one Icon parameter — an image to be
displayed. After an object is created, you can add or change its features by calling its
methods. For example, JLabel’s setText method can be used to change the line of
text it displays. A GUI object must be added to your application’s or applet’s
“content pane” or to one of the other components. We’ll discuss placement of GUI
components on windows and panels in Section 17.4.

� � �

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/index.html

 17.3 ~ BASIC SWING COMPONENTS AND THEIR EVENTS 17-7

Each GUI component (with the exception of JLabel and JPanel) generates certain
types of events. Your program can capture these events using an appropriate type of
event “listener,” an object of a class that implements a particular “Listener” interface.

Recall that a class can implement several interfaces, so the same object can serve as
several types of listeners. For example:

public class ControlPanel extends JPanel
 implements ActionListener, ChangeListener, KeyListener
{
 ...
}

To capture events from a component, you need to add the appropriate type of listener
object to that component. For example, a JButton object generates “action” events.
These events can be captured by an ActionListener object (that is, an object of a
class that implements the ActionListener interface). The ActionListener
interface requires one method:

 public void actionPerformed(ActionEvent e)

To add an “action listener” to a button, you have to call that button’s
addActionListener method. Figure 17-1 gives an example. Here, the
PlayButtonListener class is embedded into ControlPanel as a private inner
class. We have tried to avoid inner classes in this book, and we could have made
PlayButtonListener a separate public class instead. However, with many GUI
components and a separate listener class for each of them, the number of source files
would become quite large. Also, a listener may need access to fields in the class or
object that creates it (for example, bells in the Figure 17-1 example).

When implementing an event listener, programmers often use a private
inner class that has access to all the fields of the surrounding public
class.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

17-8 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JButton;

public class ControlPanel extends JPanel
{
 private EasySound bells = new EasySound("bells.wav");

 public ControlPanel()
 {
 JButton button = new JButton(" Play ");
 button.addActionListener(new PlayButtonListener());
 add(button);
 }

 private class PlayButtonListener
 implements ActionListener
 {
 public void actionPerformed(ActionEvent e) Embedded

private class {
 bells.play();
 }
 }

 public static void main(String[] args)
 {
 JFrame window = new JFrame("ActionListener demo");
 window.setBounds(100, 100, 300, 100);
 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 ControlPanel panel = new ControlPanel();
 window.getContentPane().add(panel);
 window.setVisible(true);
 }
}

Figure 17-1. An ActionListener implemented as an inner class

In simple cases, the object that creates a GUI component can also serve as its listener.
Then you can just use this as a parameter to the addActionListener (or
add<Whatever>Listener) method. For example:

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 17.3 ~ BASIC SWING COMPONENTS AND THEIR EVENTS 17-9

public class ControlPanel extends JPanel
 implements ActionListener
{
 private EasySound bells = new EasySound("bells.wav");

 public ControlPanel()
 {
 JButton button = new JButton(" Play ");
 button.addActionListener(this);
 add(button);
 }

 public void actionPerformed(ActionEvent e)
 {
 bells.play();
 }
}

The advantage of the latter approach is simpler code. The disadvantage is that if your
object has created several buttons, then its actionPerformed method has to sort
them out and take different actions depending on which one was clicked. For
example:

 public void actionPerformed(ActionEvent e)
 {
 JButton button = (JButton)e.getSource();
 if (button == myButton1)
 < ... do one thing >
 else if (button == myButton2)
 < ... do another thing >
 }

A listener for a particular component is an object, not a class.

The Snack Bar program, for example (Section 10.9), creates three similar objects of
the VendingMachine class, and each machine becomes the action listener for its
own buttons. Very convenient.

� � �

You do not have to capture every event from GUI components. With the exception
of JButton, an event signals that the state of the component has changed.
Sometimes you may prefer to retrieve the current state of the component later, when
you need it, not right at the moment when it changes. (For instance, you may not
care what options a user has chosen until he clicks “OK.”) All components provide
methods for getting state information from them. For example, JTextField and
JTextArea have the getText method, JComboBox has the getSelectedItem
and getSelectedIndex methods, and JCheckBox has the isSelected method.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

17-10 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

In the Benchmarks program in Chapter 14, JComboBox’s and JTextField’s events
are ignored while JButton’s events are captured and processed by an “action
listener.” Then the listener’s actionPerformed method retrieves the information
from the JComboBox and JTextField components. For JButtons you pretty
much have to capture their events (unless it’s just a clicking exercise), because a
button’s state does not change after it is clicked.

A common error is to create a GUI object but forget to attach a listener
to it. Of course, then there is no way to capture its events.

� � �

In a Java program, events are represented by objects of special types: ActionEvent,
ItemEvent, KeyEvent, MouseEvent, and so on. If you do capture an event, the
event itself carries information that the listener’s method can use. You can find out
which component caused the event by calling the event’s getSource method: it
returns an Object, a reference to the object that caused the event. You can cast this
returned Object into whatever type of component this listener is processing events
for (see the example for JButton above).

For action events you can also retrieve an “action command” by calling the event’s
getActionCommand method. It returns a string associated with the component. By
default it returns the text written on the button or in a JTextField component, but
you can set it yourself by calling your component’s setActionCommand method.
This may be useful, for instance, if the same button should trigger different actions at
different times (for example, “Go” / “Stop”).

The same component may generate different types of events captured by
different types of listeners. Your program may choose to capture a
certain type of events and ignore other types. Most components
generate ActionEvents that are captured by an action listener.

Appendix C summarizes the basic Swing components, their event listeners, and their
most commonly used constructors and methods. Most importantly, it gives
references to some examples of their use in this book’s case studies, labs, and
exercises.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 17.4 ~ LAYOUTS 17-11

17.4 Layouts

Learning about GUI components is only half the trick. The second half is learning
how to place them on the screen.

In AWT and Swing, GUI components are added to containers.

A container is an object of the Java class Container. One container is the
JFrame’s “content pane.” A reference to it can be obtained by calling the
getContentPane method. Other containers include boxes (objects of the Box
class) and panels (objects of the JPanel class). In fact, all Swing components have
Container as an ancestor, so all of them are “containers.” But it is boxes and
panels to which other components are usually added. You can have nested
containers: boxes within boxes, boxes within panels, panels within boxes, and so on.

Repainting all the components in an application is a good opportunity to use
recursion: for each component, first its picture is repainted, then (recursively) all
components contained in it are repainted. Recursion is a perfect tool for dealing with
such nested structures.

Java applications try to be platform-independent and to some extent scalable. To
achieve this, Java gives up the possibility of precise placement of components based
on specified pixel coordinates. Instead, components are placed with the help of
“layout managers.” A layout manager implements a certain strategy for placing
components. In this section we will consider four kinds of layout managers:
FlowLayout, GridLayout, BorderLayout and BoxLayout. (You can look up
other layouts in the Java tutorial [1] and the API specs.) Each type of container has a
default layout manager, but you can choose a different one by calling the container’s
setLayout method. A layout manager is an object, and as such it must be created
before it can be used in a container. A typical idiom for setting a layout manager
may look like this:

 JPanel panel = new JPanel();
 panel.setLayout(new FlowLayout());
 panel.add(...); // Add a component
 < ... etc. >

By default, the content pane uses BorderLayout, a Box uses BoxLayout,
and a JPanel uses FlowLayout.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

http://download.oracle.com/javase/tutorial/uiswing/layout/visual.html

17-12 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

Let us consider these three plus GridLayout, typically used with panels.

Flow Layout

FlowLayout is the most automatic and least precise of layout managers. It places
components in the order they are added, starting from the top row of the container
area and filling it as long as components fit, then starting a next row, and so on.
There is a way to center the components or left- or right-justify them. For example:

 Container c = getContentPane();
 FlowLayout layout = new FlowLayout();
 layout.setAlignment(FlowLayout.LEFT);
 c.setLayout(layout);
 c.add(...); // Add a component
 < ... etc. >

It is convenient to use FlowLayout when you want to put together a little program
with a couple of GUI components quickly. A FlowLayout manager spaces the rows
and the components within them in a reasonable way. We have used FlowLayout
several times (see Appendix C).

Grid Layout

GridLayout is the opposite of FlowLayout: it is the most rigidly controlled. The
grid occupies the whole area of the container, and all grid cells are the same size.
GridLayout’s constructor takes two parameters, the number of rows and the
number of columns in the grid. This constructor creates no gaps between the grid
cells. Another constructor takes the number of rows and the number of columns in
the grid plus two more parameters, the horizontal gap and the vertical gap between
the grid cells (in pixels). Components are added starting from the upper-left corner
of the grid, filling the first row, then the next row, and so on. There is no way to skip
a cell unless you put a dummy object into it (for example, an empty panel). We have
used a GridLayout in the Benchmarks program in Chapter 14 and in the Puzzle
program in Chapter 16.

Border Layout

BorderLayout splits the container area into five regions (Figure 17-2) and lets you
add one component to each region. A border region can expand to reasonably fit the
component in that region. If necessary, you can set the size of the component by
calling its setPreferredSize method. When you add a component to a container
with a “border” layout, you have to specify explicitly which region it goes into. For
example:

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 17.4 ~ LAYOUTS 17-13

 Container c = getContentPane();
 c.add(crapsTable, BorderLayout.CENTER);
 c.add(controlPanel, BorderLayout.SOUTH);

We have used BorderLayout in many programs.

NORTH

SOUTH

WEST EASTCENTER

Figure 17-2. The border layout

Box Layout

BoxLayout can be used with panels, but it is usually used with boxes, in which it is
the default layout. You can create a Box container using a constructor with one int
parameter with the value BoxLayout.X_AXIS or BoxLayout.Y_AXIS. For some
reason, there are also two static methods Box.createHorizontalBox() and
Box.createVerticalBox() that return a reference to a new box, and it is
common to use them instead of the constructors. In general, the idiom for working
with boxes is different: it relies more on Box’s static methods.

“Horizontal” and “vertical” boxes are not defined by their dimensions but rather by
how components are placed in them. In a horizontal box, components are added left
to right. Stretchable components, such as panels, take the full height of the box. You
can also add a horizontal “strut,” an invisible spacer that inserts a fixed amount of
space between components. For example:

 Box b = Box.createHorizontalBox();
 b.add(...); // add a component
 b.add(Box.createHorizontalStrut(10)); // unused space, 10 pixels
 b.add(...); // add another component
 < ... etc. >

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

17-14 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

In a vertical box, components are added starting from the top and fill the whole width
if they can. For a vertical box, you can add a vertical “strut.” If you add a horizontal
strut to a vertical box, it will set the minimum width of the box. We have used both
horizontal and vertical boxes in the Snack Bar program in Chapter 10.

17.5 Menus

Any respectable program has a menu bar with pull-down menus. If nothing else,
that’s where the copyright message goes, under “Help / About...”

You can add a menu bar to a JApplet or a JFrame object, or any object of a class
derived from one of them. A menu bar is a JMenuBar class object; it is added by
calling the setJMenuBar method. You can add JMenu objects to your menu bar.
To JMenu objects you can add JMenuItems, JRadioButtonMenuItems,
JCheckBoxMenuItems, and more JMenus (submenus). You can split a menu into
groups by calling JMenu’s addSeparator method. You can add “action listeners”
to JMenuItems, checkboxes, and radio buttons. The code for all this is quite
straightforward but verbose and repetitive. Visual development tools let
programmers design menus and other GUI components interactively, then generate
most of the Java code automatically. Still, you have to know what’s going on, and
the best way to learn it is by working through an example. Oracle’s How to Use
Menus tutorial [1] is a good starting point. It describes different types of components
that can go into menus and provides several simple examples.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

http://download.oracle.com/javase/tutorial/uiswing/components/menu.html

 17.6 ~ CASE STUDY AND LAB: THE RAMBLECS GAME 17-15

17.6 Case Study and Lab: The Ramblecs Game

Figure 17-3 shows a snapshot from the Ramblecs game program. In this game, a
user navigates and rotates falling “letter cubes” in such a way that the letters form
words in the bottom row. Run the program by clicking on the ramblecs.jar file in
JM\Ch17\Ramblecs. The help screen explains the rules.

Figure 17-3. The Ramblecs game

Figure 17-4 shows a class diagram for Ramblecs. The LetterCube class represents
a cube with 6 random letters assigned to its faces; one of the letters is designated as
the front letter. The cube can be rotated, so that each of the letters can take the front
position. (Rotation is logical in the array of six letters — it does not emulate cube
rotation in three dimensions.) FallingCube, a subclass of LetterCube, adds x, y
coordinates to the cube and a method to move it. The RamblecsCharMatrix class
is similar to the CharMatrix class that you wrote for Chomp in Chapter 9; it
represents a 2-D array of characters. Two methods are specific to Ramblecs: one
returns the string of characters in the bottom row; another shifts all the rows down by
one. The RamblecsDictionary class holds a dictionary of 3-, 4-, and 5-letter
words. You might recall that the source code for this class was generated from a file
of words by a program in the Chapter 15 lab. We have added a method to the
RamblecsDictionary class that checks whether a given word is in the dictionary
with the help of Arrays.binarySearch.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

17-16 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

Ramblecs

LetterCube RamblecsCharMatrix FallingCube

A B
extends

depends on

has

implements

RamblecsDictionary LetterPanel

RamblecsMenu

ControlPanel «interface»
ScoreDisplay RamblecsKeyListener

RamblecsHelp

Figure 17-4. Classes in the Ramblecs program

The rest of the classes deal with graphics and GUI: this is a GUI-intensive
application. Ramblecs is the main class; it creates a menu bar, a keyboard handler, a
control panel, a “letter panel” on which the cubes fall, and a dictionary.
RamblecsKeyListener handles keyboard input. ControlPanel serves as the
display for the elapsed time and score and holds the speed slider and the “Go” button.
LetterPanel has methods for moving the falling cube and for drawing the letter
grid and the cube. RamblecsHelp provides two static methods that display help
screens.

GUI implementation can be challenging in two ways. First, it is hard to know ahead
of time how things will look and feel in the program; you may need to do some
prototyping or rely on the trial-and-error approach. Second, Swing’s strategies for
laying out components are complex and not fully documented; again, you may need
to go through a few iterations to get it right.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 17.6 ~ CASE STUDY AND LAB: THE RAMBLECS GAME 17-17

Your task in this lab is to fill in the blanks in the Ramblecs, RamblecsMenu, and
ControlPanel classes. We have intentionally left out the description of the GUI
components involved and how they work: we want you to explore Appendix C and
the Java API documentation [1] and tutorials [1, 2]. There are also hints in the source
code comments.

 1. The Ramblecs class:

 Add code to main to set system-specific PLAF.

 2. The RamblecsMenu class:

 Experiment with the executable program and write a constructor and event

handlers that work the same way. Note that the “Play Sound” menu item under
File / Preferences does not generate events: a boolean method soundEnabled
is provided instead. Sound should be enabled when the program is started. All
other menu items generate events that are captured by an ActionListener:
“New Game” calls game’s newGame method, “Exit” calls System.exit, and
the Help menu items call RamblecsHelp’s static methods showHelp and
showAbout, respectively.

 3. The ControlPanel class:

 This class represents the Ramblecs control panel. It contains three text fields

with respective labels, a speed slider, and a “Go” button. Experiment with the
executable program to see how they work. Note that the “Go” button toggles
between “Go” and “Stop.” The time and score text fields are non-editable, but
the user can enter an integer in the speed field, and then the speed setting and
the speed slider are adjusted accordingly. Don’t let the program crash if the user
input is invalid — instead, just set the field to the current speed slider setting.

Set up a project with the three classes that you have completed and ramblecs.jar,
and test the program thoroughly.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

http://docs.oracle.com/javase/8/docs/api/index.html
http://download.oracle.com/javase/tutorial/uiswing/components/index.html
http://download.oracle.com/javase/tutorial/uiswing/layout/index.html

17-18 CHAPTER 17 ~ GUI COMPONENTS AND EVENTS

17.7 Summary

The javax.swing package supports platform-independent implementation of GUI
components and pluggable look and feel. The default cross-platform look and feel is
known as the “Metal” look and feel. “Nimbus” is a newer, more polished, cross-
platform look and feel, added in Java 6. A programmer can opt for a system-specific
look and feel (one that looks like Windows, or Mac OS, or UNIX Motif) using
Swing’s pluggable look and feel feature.

Appendix C presents a synopsis of several Swing GUI components and an index of
their use in the case studies, labs, and exercises in this book.

Events generated by Swing components are captured by different event “listeners.”
An event listener is an object of a class that implements ActionListener,
ItemListener, ChangeListener, or another “listener” interface. Listener classes
are often implemented as private inner classes. An event listener object can be added
to a component by calling its addActionListener, addItemListener, or
addChangeListener method. The object that creates a component can also be its
event listener, in which case the parameter to the component’s
add<Whatever>Listener method is this.

Most components generate action events that can be captured by the
actionPerformed method of an action listener object. JToggleButton,
JCheckBox, JRadioButton, and JComboBox components also generate “item
events” that can be captured by the itemStateChanged method of an “item
listener.” JSlider components generate “change events” that can be captured by
the stateChanged method of a ChangeListener object.

Swing components are added to containers with the help of layout managers. One
container is a content pane. To obtain a reference to it, call JApplet’s or JFrame’s
getContentPane method. Its default layout manager has the BorderLayout type.
Examples of other containers are boxes (objects of the Box class) and panels (objects
of the JPanel class). For boxes, the default layout manager type is BoxLayout; for
panels, FlowLayout. You can choose a different layout by calling the container’s
setLayout method.

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

 17.7 ~ SUMMARY 17-19

In FlowLayout, components are added in one row as long as they fit, then in the
next row, and so on. Components are reasonably spaced and can be centered
(default), right aligned, or left aligned. In GridLayout, components are placed on a
rectangular grid that covers the container’s area and has all cells of the same size.
You can specify horizontal and vertical gaps between the cells. Components are
added starting at the upper-left corner of the grid and filling the first row, then the
next row, and so on. BorderLayout can accommodate up to five components, one
for each of the five regions: north, south, east, west, and center. In BoxLayout,
components fill a horizontal or vertical box. In a horizontal box, components are
placed left to right; in a vertical box, components are placed top to bottom.

In all layouts, a component can be a panel or a box with its own components in it.
There is no easy uniform way of placing components in Java, and one has to resort to
a bag of tricks to get the layout right.

To add a menu bar (a JMenuBar object) to an applet or application, call its
setMenuBar method. You can add JMenu objects to the program’s menu bar and
JMenuItems, JCheckBoxMenuItems, JRadioButtonMenuItems, or JMenus
(submenus) to any JMenu. You can split a menu into groups of items by calling
JMenu’s addSeparator method. To make the menu work, add action listeners to
JMenuItems, checkboxes, and radio buttons.

	 Exercises 	

The exercises for this chapter are in the book (Java Methods: Object-Oriented
Programming and Data Structures, 3rd AP Edition, ISBN 978-0-9824775-6-4,
Skylight Publishing, 2015 [1]).

C
op

yr
ig

ht
 ©

 2
01

5
by

 S
ky

lig
ht

 P
ub

lis
hi

ng

http://www.skylit.com/

